EdgeMA: Model Adaptation System for Real-Time Video Analytics on Edge Devices

被引:0
|
作者
Wang, Liang [1 ]
Zhang, Nan [2 ]
Qu, Xiaoyang [2 ]
Wang, Jianzong [2 ]
Wan, Jiguang [1 ]
Li, Guokuan [1 ]
Hu, Kaiyu [3 ]
Jiang, Guilin [4 ]
Xiao, Jing [2 ]
机构
[1] Huazhong Univ Sci & Technol, Wuhan, Peoples R China
[2] Ping An Technol Shenzhen Co Ltd, Shenzhen, Peoples R China
[3] SUNY Stony Brook, Stony Brook, NY USA
[4] Hunan Chasing Financial Holdings Co Ltd, Changsha, Peoples R China
来源
NEURAL INFORMATION PROCESSING, ICONIP 2023, PT I | 2024年 / 14447卷
基金
中国国家自然科学基金;
关键词
Edge Computing; Deep Neural Network; Video Analytics; Data Drift; Model Adaptation; NEURAL-NETWORK;
D O I
10.1007/978-981-99-8079-6_23
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Real-time video analytics on edge devices for changing scenes remains a difficult task. As edge devices are usually resource-constrained, edge deep neural networks (DNNs) have fewer weights and shallower architectures than general DNNs. As a result, they only perform well in limited scenarios and are sensitive to data drift. In this paper, we introduce EdgeMA, a practical and efficient video analytics system designed to adapt models to shifts in real-world video streams over time, addressing the data drift problem. EdgeMA extracts the gray level co-occurrence matrix based statistical texture feature and uses the Random Forest classifier to detect the domain shift. Moreover, we have incorporated a method of model adaptation based on importance weighting, specifically designed to update models to cope with the label distribution shift. Through rigorous evaluation of EdgeMA on a real-world dataset, our results illustrate that EdgeMA significantly improves inference accuracy.
引用
收藏
页码:292 / 304
页数:13
相关论文
共 50 条
  • [1] Real-Time Video Analytics: The Killer App for Edge Computing
    Ananthanarayanan, Ganesh
    Bahl, Paramvir
    Bodik, Peter
    Chintalapudi, Krishna
    Philipose, Matthai
    Ravindranath, Lenin
    Sinha, Sudipta
    COMPUTER, 2017, 50 (10) : 58 - 67
  • [2] Enabling Real-Time AI Edge Video Analytics
    Tsakanikas, Vassilis
    Dagiuklas, Tasos
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2021), 2021,
  • [3] ParaLoupe: Real-Time Video Analytics on Edge Cluster via Mini Model Parallelization
    Wang, Hanling
    Li, Qing
    Kang, Haidong
    Hu, Dieli
    Ma, Lianbo
    Tyson, Gareth
    Yuan, Zhenhui
    Jiang, Yong
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (12) : 13945 - 13962
  • [4] Mystique: User-Level Adaptation for Real-Time Video Analytics in Edge Networks via Meta-RL
    Shi, Xiaohang
    Zhang, Sheng
    Liu, Meizhao
    Meng, Lingkun
    Wei, Liu
    Gu, Yingcheng
    Liu, Kai
    Cheng, Huanyu
    Song, Yu
    Tang, Lei
    Zhu, Andong
    Chen, Ning
    Qian, Zhuzhong
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2025, 24 (05) : 3615 - 3632
  • [5] On-Edge High-Throughput Collaborative Inference for Real-Time Video Analytics
    Wang, Xingwang
    Shen, Muzi
    Yang, Kun
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (20): : 33097 - 33109
  • [6] EdgeEye - An Edge Service Framework for Real-time Intelligent Video Analytics
    Liu, Peng
    Qi, Bozhao
    Banerjee, Suman
    EDGESYS'18: PROCEEDINGS OF THE FIRST ACM INTERNATIONAL WORKSHOP ON EDGE SYSTEMS, ANALYTICS AND NETWORKING, 2018, : 1 - 6
  • [7] An Edge-Side Real-Time Video Analytics System With Dual Computing Resource Control
    Hu, Chuang
    Lu, Rui
    Sang, Qianlong
    Liang, Huanghuang
    Wang, Dan
    Cheng, Dazhao
    Zhang, Jin
    Li, Qing
    Peng, Junkun
    IEEE TRANSACTIONS ON COMPUTERS, 2023, 72 (12) : 3399 - 3415
  • [8] SmartEye: An Open Source Framework for Real-Time Video Analytics with Edge-Cloud Collaboration
    Wang, Xuezhi
    Gao, Guanyu
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 3767 - 3770
  • [9] Edge-Assisted Real-Time Video Analytics With Spatial-Temporal Redundancy Suppression
    Wang, Ziyi
    He, Xiaoyu
    Zhang, Zhizhen
    Zhang, Yishuo
    Cao, Zhen
    Cheng, Wei
    Wang, Wendong
    Cui, Yong
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (07) : 6324 - 6335
  • [10] VaBUS: Edge-Cloud Real-Time Video Analytics via Background Understanding and Subtraction
    Wang, Hanling
    Li, Qing
    Sun, Heyang
    Chen, Zuozhou
    Hao, Yingqian
    Peng, Junkun
    Yuan, Zhenhui
    Fu, Junsheng
    Jiang, Yong
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2023, 41 (01) : 90 - 106