Elucidating salient site-specific functional connectivity features and site-invariant biomarkers in schizophrenia via deep neural networks

被引:3
作者
Chan, Yi Hao [1 ]
Yew, Wei Chee [1 ]
Chew, Qian Hui [2 ]
Sim, Kang [2 ,3 ]
Rajapakse, Jagath C. [1 ]
机构
[1] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore 639798, Singapore
[2] Inst Mental Hlth IMH, Div Res, Singapore, Singapore
[3] Inst Mental Hlth IMH, West Reg, Singapore, Singapore
关键词
HESCHLS GYRUS;
D O I
10.1038/s41598-023-48548-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Schizophrenia is a highly heterogeneous disorder and salient functional connectivity (FC) features have been observed to vary across study sites, warranting the need for methods that can differentiate between site-invariant FC biomarkers and site-specific salient FC features. We propose a technique named Semi-supervised learning with data HaRmonisation via Encoder-Decoder-classifier (SHRED) to examine these features from resting state functional magnetic resonance imaging scans gathered from four sites. Our approach involves an encoder-decoder-classifier architecture that simultaneously performs data harmonisation and semi-supervised learning (SSL) to deal with site differences and labelling inconsistencies across sites respectively. The minimisation of reconstruction loss from SSL was shown to improve model performance even within small datasets whilst data harmonisation often led to lower model generalisability, which was unaffected using the SHRED technique. We show that our proposed model produces site-invariant biomarkers, most notably the connection between transverse temporal gyrus and paracentral lobule. Site-specific salient FC features were also elucidated, especially implicating the paracentral lobule for our local dataset. Our examination of these salient FC features demonstrates how site-specific features and site-invariant biomarkers can be differentiated, which can deepen our understanding of the neurobiology of schizophrenia.
引用
收藏
页数:15
相关论文
共 48 条
[1]   The ADHD-200 Consortium: a model to advance the translational potential of neuroimaging in clinical neuroscience [J].
Acuna, Carlos .
FRONTIERS IN SYSTEMS NEUROSCIENCE, 2012, 6
[2]   Functional network connectivity impairments and core cognitive deficits in schizophrenia [J].
Adhikari, Bhim M. ;
Hong, L. Elliot ;
Sampath, Hemalatha ;
Chiappelli, Joshua ;
Jahanshad, Neda ;
Thompson, Paul M. ;
Rowland, Laura M. ;
Calhoun, Vince D. ;
Du, Xiaoming ;
Chen, Shuo ;
Kochunov, Peter .
HUMAN BRAIN MAPPING, 2019, 40 (16) :4593-4605
[3]  
Amina S., 2014, Uncus. Encycl. Neurol. Sci., P582, DOI [10.1016/B978-0-12-385157-4.01182-9, DOI 10.1016/B978-0-12-385157-4.01182-9]
[4]  
Ancona M, 2017, ARXIV171106104V4, DOI DOI 10.48550/ARXIV.1711.06104
[5]   Classification of schizophrenia patients based on resting-state functional network connectivity [J].
Arbabshirani, Mohammad R. ;
Kiehl, Kent A. ;
Pearlson, Godfrey D. ;
Calhoun, Vince D. .
FRONTIERS IN NEUROSCIENCE, 2013, 7
[6]   Site effects how-to and when: An overview of retrospective techniques to accommodate site effects in multi-site neuroimaging analyses [J].
Bayer, Johanna M. M. ;
Thompson, Paul M. ;
Ching, Christopher R. K. ;
Liu, Mengting ;
Chen, Andrew ;
Panzenhagen, Alana C. ;
Jahanshad, Neda ;
Marquand, Andre ;
Schmaal, Lianne ;
Samann, Philipp G. .
FRONTIERS IN NEUROLOGY, 2022, 13
[7]   ConnSearch: A framework for functional connectivity analysis designed for interpretability and effectiveness at limited sample sizes [J].
Bogdan, Paul C. ;
Iordan, Alexandru D. ;
Shobrook, Jonathan ;
Dolcos, Florin .
NEUROIMAGE, 2023, 278
[8]   Semi-supervised Learning with Data Harmonisation for Biomarker Discovery from Resting State fMRI [J].
Chan, Yi Hao ;
Yew, Wei Chee ;
Rajapakse, Jagath C. .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT I, 2022, 13431 :441-451
[9]   Decoding Task States by Spotting Salient Patterns at Time Points and Brain Regions [J].
Chan, Yi Hao ;
Gupta, Sukrit ;
Kasun, L. L. Chamara ;
Rajapakse, Jagath C. .
MACHINE LEARNING IN CLINICAL NEUROIMAGING AND RADIOGENOMICS IN NEURO-ONCOLOGY, MLCN 2020, RNO-AI 2020, 2020, 12449 :88-97
[10]   Brain ageing in schizophrenia: evidence from 26 international cohorts via the ENIGMA Schizophrenia consortium [J].
Constantinides, Constantinos ;
Han, Laura K. M. ;
Alloza, Clara ;
Antonucci, Linda Antonella ;
Arango, Celso ;
Ayesa-Arriola, Rosa ;
Banaj, Nerisa ;
Bertolino, Alessandro ;
Borgwardt, Stefan ;
Bruggemann, Jason ;
Bustillo, Juan ;
Bykhovski, Oleg ;
Calhoun, Vince ;
Carr, Vaughan ;
Catts, Stanley ;
Chung, Young-Chul ;
Crespo-Facorro, Benedicto ;
Diaz-Caneja, Covadonga M. ;
Donohoe, Gary ;
Du Plessis, Stefan ;
Edmond, Jesse ;
Ehrlich, Stefan ;
Emsley, Robin ;
Eyler, Lisa T. ;
Fuentes-Claramonte, Paola ;
Georgiadis, Foivos ;
Green, Melissa ;
Guerrero-Pedraza, Amalia ;
Ha, Minji ;
Hahn, Tim ;
Henskens, Frans A. ;
Holleran, Laurena ;
Homan, Stephanie ;
Homan, Philipp ;
Jahanshad, Neda ;
Janssen, Joost ;
Ji, Ellen ;
Kaiser, Stefan ;
Kaleda, Vasily ;
Kim, Minah ;
Kim, Woo-Sung ;
Kirschner, Matthias ;
Kochunov, Peter ;
Kwak, Yoo Bin ;
Kwon, Jun Soo ;
Lebedeva, Irina ;
Liu, Jingyu ;
Mitchie, Patricia ;
Michielse, Stijn ;
Mothersill, David .
MOLECULAR PSYCHIATRY, 2023, 28 (03) :1201-1209