Global regularity of solutions to the 2D steady compressible Prandtl equations

被引:1
作者
Zou, Yonghui [1 ]
机构
[1] Ocean Univ China, Sch Math Sci, Qingdao 266100, Peoples R China
来源
COMMUNICATIONS IN ANALYSIS AND MECHANICS | 2023年 / 15卷 / 04期
关键词
compressible Prandtl equations; global C-infinity regularity; favorable pressure; NAVIER-STOKES EQUATIONS; WELL-POSEDNESS; BOUNDARY-LAYERS; EXISTENCE; LIMIT;
D O I
10.3934/cam.2023034
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the global C-infinity regularity of solutions to the boundary layer equations for two-dimensional steady compressible flow under the favorable pressure gradient. To our knowledge, the difficulty of the proof is the degeneracy near the boundary. By using the regularity theory and maximum principles of parabolic equations together with the von Mises transformation, we give a positive answer to it. When the outer flow and the initial data satisfied appropriate conditions, we prove that Oleinik type solutions smooth up the boundary y = 0 for any x > 0.
引用
收藏
页码:695 / 715
页数:21
相关论文
共 28 条
  • [1] Alexandre R, 2015, J AM MATH SOC, V28, P745
  • [2] A survey on some vanishing viscosity limit results
    Beirao da Veiga, Hugo
    Crispo, Francesca
    [J]. ADVANCES IN NONLINEAR ANALYSIS, 2023, 12 (01)
  • [3] SEPARATION FOR THE STATIONARY PRANDTL EQUATION
    Dalibard, Anne-Laure
    Masmoudi, Nader
    [J]. PUBLICATIONS MATHEMATIQUES DE L IHES, 2019, 130 (01): : 187 - 297
  • [4] Global Existence of Weak Solution to the Compressible Prandtl Equations
    Ding, Min
    Gong, Shengbo
    [J]. JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2017, 19 (02) : 239 - 254
  • [5] Boundary layer problems for the two-dimensional compressible Navier-Stokes equations
    Gong, Shengbo
    Guo, Yan
    Wang, Ya-Guang
    [J]. ANALYSIS AND APPLICATIONS, 2016, 14 (01) : 1 - 37
  • [6] Regularity and Expansion for Steady Prandtl Equations
    Guo, Yan
    Iyer, Sameer
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 382 (03) : 1403 - 1447
  • [7] Continuous dependence on initial data and high energy blowup time estimate for porous elastic system
    Han, Jiangbo
    Xu, Runzhang
    Yang, Chao
    [J]. COMMUNICATIONS IN ANALYSIS AND MECHANICS, 2023, 15 (02): : 214 - 244
  • [8] Iyer S, 2024, Arxiv, DOI arXiv:2203.02845
  • [9] Iyer S, 2022, Arxiv, DOI arXiv:2212.08735
  • [10] Krylov N.V., 1996, GRADUATE STUDIES MAT, V12, DOI 10.1090/gsm/012