Cascaded Multi-Modal Mixing Transformers for Alzheimer's Disease Classification with Incomplete Data

被引:19
|
作者
Liu, Linfeng [1 ]
Liu, Siyu [2 ]
Zhang, Lu [1 ,2 ]
To, Xuan Vinh [1 ]
Nasrallah, Fatima [1 ]
Chandra, Shekhar S. [2 ]
机构
[1] Univ Queensland, Queensland Brain Inst, Brisbane, Australia
[2] Univ Queensland, Sch Informat Technol & Elect Engn, Brisbane, Australia
基金
美国国家卫生研究院; 加拿大健康研究院;
关键词
Deep learning; Medical imaging; Transformer; Alzheimer's Disease; CLINICAL-DIAGNOSIS; NATIONAL INSTITUTE; BIOMARKERS;
D O I
10.1016/j.neuroimage.2023.120267
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Accurate medical classification requires a large number of multi-modal data, and in many cases, different feature types. Previous studies have shown promising results when using multi-modal data, outperforming single modality models when classifying diseases such as Alzheimer's Disease (AD). However, those models are usually not flexible enough to handle missing modalities. Currently, the most common workaround is discarding samples with missing modalities which leads to considerable data under-utilisation. Adding to the fact that labelled medical images are already scarce, the performance of data-driven methods like deep learning can be severely hampered. Therefore, a multi-modal method that can handle missing data in various clinical settings is highly desirable. In this paper, we present Multi-Modal Mixing Transformer (3MT), a disease classification transformer that not only leverages multi-modal data but also handles missing data scenarios. In this work, we test 3MT for AD and Cognitively normal (CN) classification and mild cognitive impairment (MCI) conversion prediction to progressive MCI (pMCI) or stable MCI (sMCI) using clinical and neuroimaging data. The model uses a novel Cascaded Modality Transformers architecture with cross-attention to incorporate multi-modal information for more informed predictions. We propose a novel modality dropout mechanism to ensure an unprecedented level of modality independence and robustness to handle missing data scenarios. The result is a versatile network that enables the mixing of arbitrary numbers of modalities with different feature types and also ensures full data utilization in missing data scenarios. The model is trained and evaluated on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset with the state-of-the-art performance and further evaluated with The Australian Imaging Biomarker & Lifestyle Flagship Study of Ageing (AIBL) dataset with missing data.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Incomplete multi-modal representation learning for Alzheimer's disease diagnosis
    Liu, Yanbei
    Fan, Lianxi
    Zhang, Changqing
    Zhou, Tao
    Xiao, Zhitao
    Geng, Lei
    Shen, Dinggang
    MEDICAL IMAGE ANALYSIS, 2021, 69
  • [2] Joint Multi-Modal Longitudinal Regression and Classification for Alzheimer's Disease Prediction
    Brand, Lodewijk
    Nichols, Kai
    Wang, Hua
    Shen, Li
    Huang, Heng
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (06) : 1845 - 1855
  • [3] Multi-modal classification of Alzheimer's disease using nonlinear graph fusion
    Tong, Tong
    Gray, Katherine
    Gao, Qinquan
    Chen, Liang
    Rueckert, Daniel
    PATTERN RECOGNITION, 2017, 63 : 171 - 181
  • [4] Alzheimer's disease classification method based on multi-modal medical images
    Han K.
    Pan H.
    Zhang W.
    Bian X.
    Chen C.
    He S.
    Qinghua Daxue Xuebao/Journal of Tsinghua University, 2020, 60 (08): : 664 - 671and682
  • [5] Multi-modal sequence learning for Alzheimer's disease progression prediction with incomplete variable-length longitudinal data
    Xu, Lei
    Wu, Hui
    He, Chunming
    Wang, Jun
    Zhang, Changqing
    Nie, Feiping
    Chen, Lei
    MEDICAL IMAGE ANALYSIS, 2022, 82
  • [6] Multi-Classification Prediction of Alzheimer's Disease based on Fusing Multi-modal Features
    Pan, Qiao
    Ding, Ke
    Chen, Dehua
    2021 21ST IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2021), 2021, : 1270 - 1275
  • [7] Interoperable Multi-Modal Data Analysis Platform for Alzheimer's Disease Management
    Pang, Zhen
    Zhang, Shuhao
    Yang, Yun
    Qi, Jun
    Yang, Po
    2020 IEEE INTL SYMP ON PARALLEL & DISTRIBUTED PROCESSING WITH APPLICATIONS, INTL CONF ON BIG DATA & CLOUD COMPUTING, INTL SYMP SOCIAL COMPUTING & NETWORKING, INTL CONF ON SUSTAINABLE COMPUTING & COMMUNICATIONS (ISPA/BDCLOUD/SOCIALCOM/SUSTAINCOM 2020), 2020, : 1321 - 1327
  • [8] Multi-modal cross-attention network for Alzheimer's disease diagnosis with multi data
    Zhang, Jin
    He, Xiaohai
    Liu, Yan
    Cai, Qingyan
    Chen, Honggang
    Qing, Linbo
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 162
  • [9] Addressing the missing data challenge in multi-modal datasets for the diagnosis of Alzheimer?s disease
    Aghili, Maryamossadat
    Tabarestani, Solale
    Adjouadi, Malek
    JOURNAL OF NEUROSCIENCE METHODS, 2022, 375
  • [10] MADP: Multi-modal Sequence Learning for Alzheimer's Disease Prediction with Missing Data
    Wang, Yudie
    Wang, Zirui
    Gong, Huiyun
    Wang, Sanwang
    Li, Mingzhe
    Dong, Jian
    GENERALIZING FROM LIMITED RESOURCES IN THE OPEN WORLD, GLOW-IJCAI 2024, 2024, 2160 : 93 - 103