Study on High-Throughput Inversion Method for Anisotropic Material Parameters Based on Nanoindentation

被引:4
作者
Zu, R. L. [1 ]
Zhao, J. Y. [2 ]
Liu, Z. W. [1 ]
Ma, S. P. [2 ]
机构
[1] Beijing Inst Technol, Sch Aerosp Engn, Beijing 100081, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Naval Architecture Ocean & Civil Engn, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Experimental mechanics; Parameter inversion; Nanoindentation; Neural networks; MECHANICAL-PROPERTIES; FINITE-ELEMENT; ELASTIC-MODULUS; PART I; INDENTATION; IDENTIFICATION; MODEL; PREDICTION; DYNAMICS; HARDNESS;
D O I
10.1007/s11340-023-00977-4
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
BackgroundAccurate measurements of material constitutive model parameters are of great significance for design optimization and reliability analysis.ObjectiveIn this paper, to characterize the anisotropic elastoplastic parameters of single-crystal metal materials at the nanoscale, a high-throughput inversion method of anisotropic elastoplastic constitutive parameters of single-crystal metal materials using a neural network and bicrystalline indentation load-depth curve is proposed. It addresses the limitations of indentation technology in the characterization of anisotropic material parameters.MethodsA large number of finite-element simulation results were used to build a sample dataset. A neural network was used to build a mapping relationship model between the characteristics of the indentation load-depth curve and the parameters of the material elastic-plastic constitutive model.ResultsThe parameter inversion method based on the neural network reduced the iterative optimization link, improved the parameter inversion efficiency, and realized high-throughput parameter inversion of the nonupdated intelligent material constitutive model.ConclusionThe effectiveness of the method was verified by inversion experiments of anisotropic elastic-plastic parameters of a single-crystal copper material. The accuracy and universality of the method were further verified by an error analysis, demonstrating the engineering application prospects of the proposed method.
引用
收藏
页码:1157 / 1170
页数:14
相关论文
共 47 条
  • [1] Overview of identification methods of mechanical parameters based on full-field measurements
    Avril, Stephane
    Bonnet, Marc
    Bretelle, Anne-Sophie
    Grediac, Michel
    Hild, Francois
    Ienny, Patrick
    Latourte, Felix
    Lemosse, Didier
    Pagano, Stephane
    Pagnacco, Emmanuel
    Pierron, Fabrice
    [J]. EXPERIMENTAL MECHANICS, 2008, 48 (04) : 381 - 402
  • [2] Neural network model for 7000 (Al-Z) alloys: Classification and prediction of mechanical properties
    Belayadi, Adel
    Bourahla, Boualem
    [J]. PHYSICA B-CONDENSED MATTER, 2019, 554 : 114 - 120
  • [3] Parameter identification in anisotropic elastoplasticity by indentation and imprint mapping
    Bocciarelli, M
    Bolzon, G
    Maier, G
    [J]. MECHANICS OF MATERIALS, 2005, 37 (08) : 855 - 868
  • [4] Inverse problems in elasticity
    Bonnet, M
    Constantinescu, A
    [J]. INVERSE PROBLEMS, 2005, 21 (02) : R1 - R50
  • [5] Cai J., 2006, EXPT STUDY INITIAL P
  • [6] Mechanical properties characterization of two-dimensional materials via nanoindentation experiments
    Cao, Guoxin
    Gao, Huajian
    [J]. PROGRESS IN MATERIALS SCIENCE, 2019, 103 (558-595) : 558 - 595
  • [7] A combined inverse finite element - elastoplastic modelling method to simulate the size-effect in nanoindentation and characterise materials from the nano to micro-scale
    Chen, X.
    Ashcroft, I. A.
    Wildman, R. D.
    Tuck, C. J.
    [J]. INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2017, 104 : 25 - 34
  • [8] STRESS-STRAIN MODELING OF SANDS USING ARTIFICIAL NEURAL NETWORKS
    ELLIS, GW
    YAO, C
    ZHAO, R
    PENUMADU, D
    [J]. JOURNAL OF GEOTECHNICAL ENGINEERING-ASCE, 1995, 121 (05): : 429 - 435
  • [9] A SIMPLE PREDICTIVE MODEL FOR SPHERICAL INDENTATION
    FIELD, JS
    SWAIN, MV
    [J]. JOURNAL OF MATERIALS RESEARCH, 1993, 8 (02) : 297 - 306
  • [10] Furukawa T, 1998, INT J NUMER METH ENG, V43, P195, DOI 10.1002/(SICI)1097-0207(19980930)43:2<195::AID-NME418>3.0.CO