A Talenti Comparison Result for Solutions to Elliptic Problems with Robin Boundary Conditions

被引:16
作者
Alvino, Angelo [1 ]
Nitsch, Carlo [1 ]
Trombetti, Cristina [1 ]
机构
[1] Univ Napoli Federico II, Dipartimento Matemat & Appl R Caccioppoli, Complesso Univ Monte S Angelo,via Cintia, I-80126 Naples, Italy
关键词
EXTENSION;
D O I
10.1002/cpa.22090
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Comparison results of Talenti type for elliptic problems with Dirichlet boundary conditions have been widely investigated in recent decades. In this paper, we deal with Robin boundary conditions. Surprisingly, contrary to the Dirichlet case, Robin boundary conditions make the comparison sensitive to the dimension, and while the planar case seems to be completely settled, in higher dimensions some open problems are yet unsolved.(c) 2023 The Authors. Communications on Pure and Applied Mathematics published by Wiley Periodicals LLC.
引用
收藏
页码:585 / 603
页数:19
相关论文
共 21 条
[1]   Convex symmetrization and applications [J].
Alvino, A ;
Ferone, V ;
Trombetti, G ;
Lions, PL .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1997, 14 (02) :275-293
[2]  
ALVINO A, 1990, ANN I H POINCARE-AN, V7, P37
[3]  
Amato V., 2021, PREPRINT
[4]  
[Anonymous], 1988, Ann. Sc. Norm. Super. Pisa, Cl. Sci.
[5]  
[Anonymous], 1976, Ann. Scuola Norm. Sup. Pisa Cl. Sci.
[6]   ON RAYLEIGHS CONJECTURE FOR THE CLAMPED PLATE AND ITS GENERALIZATION TO 3 DIMENSIONS [J].
ASHBAUGH, MS ;
BENGURIA, RD .
DUKE MATHEMATICAL JOURNAL, 1995, 78 (01) :1-17
[7]  
Bennett C., 1988, Pure and Applied Mathematics, VVol. 129
[8]   INHOMOGENEOUS ELASTICALLY SUPPORTED MEMBRANES OR ELASTICALLY SUPPORTED MEMBRANES ON A SURFACE - A NEW EXTENSION OF THE RAYLEIGH-FABER-KRAHN ISOPERIMETRIC THEOREM [J].
BOSSEL, MH .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1988, 39 (05) :733-742
[9]   Faber-Krahn Inequalities for the Robin-Laplacian: A Free Discontinuity Approach [J].
Bucur, Dorin ;
Giacomini, Alessandro .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 218 (02) :757-824
[10]   A Variational Approach to the Isoperimetric Inequality for the Robin Eigenvalue Problem [J].
Bucur, Dorin ;
Giacomini, Alessandro .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 198 (03) :927-961