Superconvergence analysis of a linearized energy-conservative Galerkin method for the nonlinear Schriidinger equation with wave operator

被引:3
作者
Yang, Huaijun [1 ]
Wang, Lele [1 ]
Liao, Xin [1 ]
机构
[1] Zhengzhou Univ Aeronaut, Sch Math, Zhengzhou 450046, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonlinear Schriidinger equation with wave operator; Linearized energy-conservative scheme; Unconditionally superconvergence error estimates; FINITE-DIFFERENCE METHODS; MODELING LIGHT BULLETS; SCHRODINGER-EQUATION; ERROR ANALYSIS; UNCONDITIONAL CONVERGENCE; SINE-GORDON; FEMS; SCHEME; APPROXIMATION; STABILITY;
D O I
10.1016/j.camwa.2023.01.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, based on a modified leap-frog scheme used in temporal direction and bilinear rectangular element applied in spatial direction, the superconvergence of Galerkin approximation are investigated for the cubic nonlinear Schrodinger equation with wave operator. The key issue to our analysis is to obtain the boundedness of the numerical solution in H-1- norm, which is indeed different from the boundedness of the L-infinity- norm required in the previous literatures. The unconditionally superconvergence error estimates are obtained without any restrictions between time stepsize and spatial meshsize. Finally, some numerical results are provided to support the theoretical analysis.
引用
收藏
页码:142 / 154
页数:13
相关论文
共 40 条
  • [1] Adams Robert A., 2003, SOBOLEV SPACES, V140
  • [2] Computational methods for the dynamics of the nonlinear Schrodinger/Gross-Pitaevskii equations
    Antoine, Xavier
    Bao, Weizhu
    Besse, Christophe
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2013, 184 (12) : 2621 - 2633
  • [3] UNIFORM ERROR ESTIMATES OF FINITE DIFFERENCE METHODS FOR THE NONLINEAR SCHRODINGER EQUATION WITH WAVE OPERATOR
    Bao, Weizhu
    Cai, Yongyong
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (02) : 492 - 521
  • [4] Comparisons between sine-Gordon and perturbed nonlinear Schrodinger equations for modeling light bullets beyond critical collapse
    Bao, Weizhu
    Dong, Xuanchun
    Xin, Jack
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2010, 239 (13) : 1120 - 1134
  • [5] A linearized energy-conservative finite element method for the nonlinear Schrodinger equation with wave operator
    Cai, Wentao
    He, Dongdong
    Pan, Kejia
    [J]. APPLIED NUMERICAL MATHEMATICS, 2019, 140 : 183 - 198
  • [6] Unconditional optimal error estimates for BDF2-FEM for a nonlinear Schrodinger equation
    Cai, Wentao
    Li, Jian
    Chen, Zhangxin
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 331 : 23 - 41
  • [7] Unconditional convergence and optimal error estimates of the Euler semi-implicit scheme for a generalized nonlinear Schrodinger equation
    Cai, Wentao
    Li, Jian
    Chen, Zhangxin
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2016, 42 (06) : 1311 - 1330
  • [8] STABILITY ANALYSIS OF DIFFERENCE-SCHEMES FOR VARIABLE-COEFFICIENT SCHRODINGER TYPE EQUATIONS
    CHAN, TF
    SHEN, L
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (02) : 336 - 349
  • [9] Derivation of the cubic non-linear Schrodinger equation from quantum dynamics of many-body systems
    Erdos, Laszlo
    Schlein, Benjamin
    Yau, Horng-Tzer
    [J]. INVENTIONES MATHEMATICAE, 2007, 167 (03) : 515 - 614
  • [10] NUMERICAL-SIMULATION OF NONLINEAR SCHRODINGER SYSTEMS - A NEW CONSERVATIVE SCHEME
    FEI, Z
    PEREZGARCIA, VM
    VAZQUEZ, L
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 1995, 71 (2-3) : 165 - 177