A Scalable Enhancement-Mode Junctionless SiC FET with Embedded P+ Pockets in the Oxide Layer for High-Temperature Applications

被引:1
作者
Baruah, Ratul Kumar [1 ,2 ]
Mahajan, Bikram Kishore [2 ]
Routh, Sujay [1 ]
机构
[1] Tezpur Univ, Dept Elect & Commun Engn, Tezpur 784028, Assam, India
[2] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
关键词
Calibrated TCAD simulation; embedded P+ pocket in the oxide region; enhancement mode; high temperature; high voltage; junctionless SiC FET; SILICON-CARBIDE; ON-INSULATOR; LATERAL OVERGROWTH; SEMICONDUCTOR; FIGURE; MERIT; CRYSTALS; MOSFETS;
D O I
10.1007/s11664-022-10057-3
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Junctionless FETs exhibit better high-temperature performance than their traditional inversion-mode (IM) counterparts due to reduced scattering in the substrate-oxide interfaces. In this work, a double-gate junctionless SiC FET with an embedded P+ pocket in the oxide layer (P+-SiCJLT) is studied for DC and AC performance for high-temperature and high-voltage applications using calibrated TCAD simulations. The advantages of P+-SiCJLT are manifold: (a) it offers efficient volume depletion and therefore can be scaled to lower channel lengths, (b) it improves the ON-state to OFF-state current ratio, (c) it improves the intrinsic gain, and (d) it promotes enhancement-mode operation in traditional depletion-mode FETs. These advantages become apparent when the P+-SiCJLT is compared with a device of similar dimensions without the P+ layer (SiCJLT). Moreover, P+-SiCJLT offers better electrostatics and ION/IOFF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{I}}_{{ON}}/{{I}}_{{OFF}}$$\end{document} ratio than a SiCJLT with P+ pockets near the source/drain regions (SDPocket-SiCJLT).
引用
收藏
页码:1507 / 1517
页数:11
相关论文
共 48 条
[1]   Embedding Two P+Pockets in the Buried Oxide of Nano Silicon on Insulator MOSFETs: Controlled Short Channel Effects and Electric Field [J].
Aghaeipour, Zahra ;
Naderi, Ali .
SILICON, 2020, 12 (11) :2611-2618
[2]  
Aminzadeh P., 1998, 1998 Symposium on VLSI Technology Digest of Technical Papers (Cat. No.98CH36216), P178, DOI 10.1109/VLSIT.1998.689247
[3]   POWER SEMICONDUCTOR-DEVICE FIGURE OF MERIT FOR HIGH-FREQUENCY APPLICATIONS [J].
BALIGA, BJ .
IEEE ELECTRON DEVICE LETTERS, 1989, 10 (10) :455-457
[4]  
Baruah R. K., 2012, 5 INT C COMP DEV COM, P1, DOI 10.1109/ICEmElec.2012.6636273
[5]   A Junctionless Silicon Carbide Transistor for Harsh Environment Applications [J].
Baruah, Ratul K. ;
Mahajan, Bikram K. ;
Chen, Yen-Pu ;
Paily, Roy P. .
JOURNAL OF ELECTRONIC MATERIALS, 2021, 50 (10) :5682-5690
[6]   A Dual-Material Gate Junctionless Transistor With High-k Spacer for Enhanced Analog Performance [J].
Baruah, Ratul K. ;
Paily, Roy P. .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2014, 61 (01) :123-128
[7]   Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: A review [J].
Casady, JB ;
Johnson, RW .
SOLID-STATE ELECTRONICS, 1996, 39 (10) :1409-1422
[8]   Enhancement-mode Ga2O3 wrap-gate fin field-effect transistors on native (100) β-Ga2O3 substrate with high breakdown voltage [J].
Chabak, Kelson D. ;
Moser, Neil ;
Green, Andrew J. ;
Walker, Dennis E. ;
Tetlak, Stephen E. ;
Heller, Eric ;
Crespo, Antonio ;
Fitch, Robert ;
McCandless, Jonathan P. ;
Leedy, Kevin ;
Baldini, Michele ;
Wagner, Gunter ;
Galazka, Zbigniew ;
Li, Xiuling ;
Jessen, Gregg .
APPLIED PHYSICS LETTERS, 2016, 109 (21)
[9]   High voltage characteristics of junctionless poly-silicon thin film transistors [J].
Cheng, Ya-Chi ;
Wu, Yung-Chun ;
Chen, Hung-Bin ;
Han, Ming-Hung ;
Lu, Nan-Heng ;
Su, Jun-Ji ;
Chang, Chun-Yen .
APPLIED PHYSICS LETTERS, 2013, 103 (12)
[10]  
Colinge JP, 2008, INTEGR CIRCUIT SYST, P1, DOI 10.1007/978-0-387-71752-4_1