Dual N-modification enables high-performance Solid-State Li metal batteries with Li5.5PS4.5Cl1.5

被引:37
作者
Wei, Chaochao [1 ,2 ]
Wang, Ru [1 ]
Wu, Zhongkai [1 ]
Luo, Qiyue [1 ]
Jiang, Ziling [1 ]
Ming, Liang [1 ]
Zhang, Long [3 ]
Lu, Hongcheng [2 ]
Li, Guangshe [4 ]
Li, Liping [4 ]
Yu, Chuang [1 ]
Cheng, Shijie [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Elect & Elect Engn, State Key Lab Adv Electromagnet Technol, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Chem & Chem Engn, Wuhan 430074, Peoples R China
[3] Fujian Normal Univ, Coll Phys & Energy, Fuzhou 350117, Peoples R China
[4] Jilin Univ, Coll Chem, State Key Lab Inorgan Synth & Preparat Chem, Changchun 130012, Peoples R China
基金
中国国家自然科学基金;
关键词
Argyrodite electrolytes; Lithium metal compatibility; N-modification; All-solid-state lithium batteries; Li5.5PS4.5Cl1.5; LITHIUM METAL; ARGYRODITE LI6PS5CL; ION BATTERY; ELECTROLYTE; INTERPHASE; STABILITY;
D O I
10.1016/j.cej.2023.146531
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
All-solid-state lithium batteries (ASSLIBs) have received a lot of attention due to their excellent safety and high energy density, making them a potential alternative to traditional liquid lithium-ion batteries. However, the growth of lithium dendrites within sulfide solid electrolytes is a major challenge in realizing its full potential. Here, a new strategy of modifying the bare Li metal anode surface with a layer of Li3N and introducing N-dopants into the Li5.5PS4.5Cl1.5 electrolyte structure is designed. Such dual N-modification prevents the growth of lithium dendrite, particularly at high current densities during the lithium plating/stripping processes. The dense Li3N interfacial layer induces uniform deposition of lithium ions and optimizes their transport across the interface. When Li dendrites penetrate the interlayer, they are consumed by the N-modified Li5.7PS4.3N0.2Cl1.5 electrolyte, further forming high interfacial energy Li3N to prevent further growth of lithium dendrites. The effectiveness of this strategy has been demonstrated in both lithium symmetric batteries and all-solid-state lithium metal batteries (ASSLMBs). Symmetrical batteries exhibit a stable cycle duration of 400 h at different current densities (0.2 similar to 1.0 mA cm(-2)). The corresponding battery consisting of the bare NCM622 cathode, Li5.7PS4.3N0.2Cl1.5 electrolyte, and Li3N-coated Li metal anode delivers a high initial discharge capacity of 183.1 mAh/g at 0.1C and maintains a discharge capacity of 163.4 mAh/g after 50 cycles. The dual N-modification strategy on both bare lithium metal anode and solid electrolytes can significantly enhance the lithium metal compatibility, providing the possibility to construct ASSLMB with superior electrochemical performances.
引用
收藏
页数:12
相关论文
共 53 条
[1]   Interface Stability of Argyrodite Li6PS5Cl toward LiCoO2, LiNi1/3Co1/3Mn1/3O2, and LiMn2O4 in Bulk All-Solid-State Batteries [J].
Auvergniot, Jeremie ;
Cassel, Alice ;
Ledeuil, Jean-Bernard ;
Viallet, Virginie ;
Seznec, Vincent ;
Dedryvere, Remi .
CHEMISTRY OF MATERIALS, 2017, 29 (09) :3883-3890
[2]   Redox activity of argyrodite Li6PS5Cl electrolyte in all-solid-state Li-ion battery: An XPS study [J].
Auvergniot, Jeremie ;
Cassel, Alice ;
Foix, Dominique ;
Viallet, Virgine ;
Seznec, Vincent ;
Dedryvere, Remi .
SOLID STATE IONICS, 2017, 300 :78-85
[3]   Molten Salt Driven Conversion Reaction Enabling Lithiophilic and Air-Stable Garnet Surface for Solid-State Lithium Batteries [J].
Bi, Zhijie ;
Sun, Qifu ;
Jia, Mengyang ;
Zuo, Mingxue ;
Zhao, Ning ;
Guo, Xiangxin .
ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (52)
[4]   Dual-interface reinforced flexible solid garnet batteries enabled by in-situ solidified gel polymer electrolytes [J].
Bi, Zhijie ;
Huang, Weilin ;
Mu, Shuang ;
Sun, Wuhui ;
Zhao, Ning ;
Guo, Xiangxin .
NANO ENERGY, 2021, 90
[5]   Processing Strategies to Improve Cell-Level Energy Density of Metal Sulfide Electrolyte-Based All-Solid-State Li Metal Batteries and Beyond [J].
Cao, Daxian ;
Zhao, Yuyue ;
Sun, Xiao ;
Natan, Avi ;
Wang, Ying ;
Xiang, Pengyang ;
Wang, Wei ;
Zhu, Hongli .
ACS ENERGY LETTERS, 2020, 5 (11) :3468-3489
[6]   Unraveling Electrochemical Stability and Reversible Redox of Y-Doped Li2ZrCl6 Solid Electrolytes [J].
Chen, Shuai ;
Yu, Chuang ;
Wei, Chaochao ;
Jiang, Ziling ;
Zhang, Ziqi ;
Peng, Linfeng ;
Cheng, Shijie ;
Xie, Jia .
ENERGY MATERIAL ADVANCES, 2023, 4
[7]   Advances in Lithium-Sulfur Batteries: From Academic Research to Commercial Viability [J].
Chen, Yi ;
Wang, Tianyi ;
Tian, Huajun ;
Su, Dawei ;
Zhang, Qiang ;
Wang, Guoxiu .
ADVANCED MATERIALS, 2021, 33 (29)
[8]   Unveiling the Stable Nature of the Solid Electrolyte Interphase between Lithium Metal and LiPON via Cryogenic Electron Microscopy [J].
Cheng, Diyi ;
Wynn, Thomas A. ;
Wang, Xuefeng ;
Wang, Shen ;
Zhang, Minghao ;
Shimizu, Ryosuke ;
Bai, Shuang ;
Nguyen, Han ;
Fang, Chengcheng ;
Kim, Min-cheol ;
Li, Weikang ;
Lu, Bingyu ;
Kim, Suk Jun ;
Meng, Ying Shirley .
JOULE, 2020, 4 (11) :2484-2500
[9]   20 μm-Thick Li6.4La3Zr1.4Ta0.6O12-Based Flexible Solid Electrolytes for All-Solid-State Lithium Batteries [J].
Guo, Qingya ;
Xu, Fanglin ;
Shen, Lin ;
Deng, Shungui ;
Wang, Zhiyan ;
Li, Mengqi ;
Yao, Xiayin .
ENERGY MATERIAL ADVANCES, 2022, 2022
[10]   Enhanced Dynamic Phase Stability and Suppressed Mn Dissolution in Low-Tortuosity Spinel LMO Electrode [J].
He, Renjie ;
Lei, Sheng ;
Liu, Mengchuang ;
Qin, Mingsheng ;
Zhong, Wei ;
Cheng, Shijie ;
Xie, Jia .
ENERGY MATERIAL ADVANCES, 2022, 2022