Nishimori's Cat: Stable Long-Range Entanglement from Finite-Depth Unitaries and Weak Measurements

被引:60
作者
Zhu, Guo-Yi [1 ]
Tantivasadakarn, Nathanan [2 ,3 ,4 ]
Vishwanath, Ashvin [4 ]
Trebst, Simon [1 ,5 ]
Verresen, Ruben [4 ]
机构
[1] Univ Cologne, Inst Theoret Phys, Zulpicher Str 77, D-50937 Cologne, Germany
[2] CALTECH, Walter Burke Inst Theoret Phys, Pasadena, CA 91125 USA
[3] CALTECH, Dept Phys, Pasadena, CA 91125 USA
[4] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[5] Flatiron Inst, Ctr Computat Quantum Phys, 162 5th Ave, New York, NY 10010 USA
关键词
MULTICRITICAL POINT; SPIN-GLASSES; ACCURACY THRESHOLD; GAUGE-THEORY; QUANTUM; EXPANSION; ORDER;
D O I
10.1103/PhysRevLett.131.200201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the field of monitored quantum circuits, it has remained an open question whether finite-time protocols for preparing long-range entangled states lead to phases of matter that are stable to gate imperfections, that can convert projective into weak measurements. Here, we show that in certain cases, long-range entanglement persists in the presence of weak measurements, and gives rise to novel forms of quantum criticality. We demonstrate this explicitly for preparing the two-dimensional Greenberger-HorneZeilinger cat state and the three-dimensional toric code as minimal instances. In contrast to random monitored circuits, our circuit of gates and measurements is deterministic; the only randomness is in the measurement outcomes. We show how the randomness in these weak measurements allows us to track the solvable Nishimori line of the random-bond Ising model, rigorously establishing the stability of the glassy long-range entangled states in two and three spatial dimensions. Away from this exactly solvable construction, we use hybrid tensor network and Monte Carlo simulations to obtain a nonzero EdwardsAnderson order parameter as an indicator of long-range entanglement in the two-dimensional scenario. We argue that our protocol admits a natural implementation in existing quantum computing architectures, requiring only a depth-3 circuit on IBM's heavy-hexagon transmon chips.
引用
收藏
页数:9
相关论文
共 109 条
[11]   A quantum processor based on coherent transport of entangled atom arrays [J].
Bluvstein, Dolev ;
Levine, Harry ;
Semeghini, Giulia ;
Wang, Tout T. ;
Ebadi, Sepehr ;
Kalinowski, Marcin ;
Keesling, Alexander ;
Maskara, Nishad ;
Pichler, Hannes ;
Greiner, Markus ;
Vuletic, Vladan ;
Lukin, Mikhail D. .
NATURE, 2022, 604 (7906) :451-+
[12]   Foliated Quantum Error-Correcting Codes [J].
Bolt, A. ;
Duclos-Cianci, G. ;
Poulin, D. ;
Stace, T. M. .
PHYSICAL REVIEW LETTERS, 2016, 117 (07)
[13]   Lieb-robinson bounds and the generation of correlations and topological quantum order [J].
Bravyi, S. ;
Hastings, M. B. ;
Verstraete, F. .
PHYSICAL REVIEW LETTERS, 2006, 97 (05)
[14]  
Bravyi S, 2022, Arxiv, DOI arXiv:2205.01933
[15]   Simulations of quantum double models [J].
Brennen, G. K. ;
Aguado, M. ;
Cirac, J. I. .
NEW JOURNAL OF PHYSICS, 2009, 11
[16]   Persistent entanglement in arrays of interacting particles [J].
Briegel, HJ ;
Raussendorf, R .
PHYSICAL REVIEW LETTERS, 2001, 86 (05) :910-913
[17]   Many-body physics with individually controlled Rydberg atoms [J].
Browaeys, Antoine ;
Lahaye, Thierry .
NATURE PHYSICS, 2020, 16 (02) :132-142
[18]   Phase transition of computational power in the resource states for one-way quantum computation [J].
Browne, Daniel E. ;
Elliott, Matthew B. ;
Flammia, Steven T. ;
Merkel, Seth T. ;
Miyake, Akimasa ;
Short, Anthony J. .
NEW JOURNAL OF PHYSICS, 2008, 10
[19]  
Castelnovo C., 2010, UNDERSTANDING QUANTU, P169
[20]   Topological order in a three-dimensional toric code at finite temperature [J].
Castelnovo, Claudio ;
Chamon, Claudio .
PHYSICAL REVIEW B, 2008, 78 (15)