ON THE GAP DISTRIBUTION OF PRIME FACTORS

被引:0
作者
de la Breteche, Regis [1 ]
Tenenbaum, Gerald [2 ]
机构
[1] Sorbonne Univ, Univ Paris Cite, Inst Math, CNRS, Jussieu Paris Rive Gauche, F-75013 Paris, France
[2] Univ Lorraine, Inst Elie Cartan, BP 70239, F-54506 Vandoeuvre Les Nancy, France
关键词
Distribution of prime factors; normal order; gaps between prime factors; moments of arithmetical functions; Fourier inversion; Laplace transform; Berry-Esseen inequality;
D O I
10.1090/proc/16432
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let {pj (n)}(w(n)) j=1 denote the increasing sequence of distinct prime factors of an integer n. For z >= 0, let G(n; z) denote the number of those indexes j such that pj+1(n) > pj (n)(exp) (z). We show uniform convergence, with almost optimal effective estimate of the speed, of the distribution of G(n; z) on {n : 1 <= n <= N} to a Gaussian limit law with mean e(-z) log(2) (n), variance {e(-z) -2z e(-2z)} log(2) (n), and we establish an asymptotic formula with remainder for all centered moments.
引用
收藏
页码:3245 / 3251
页数:7
相关论文
共 9 条
[1]  
Delange H., 1959, Bull. Sci. Math., V2, P101
[3]  
Erdos P., 1959, CAN J MATH, V11, P161
[4]  
Ruzsa I. Z., 1982, THEORIE ELEMENTAIRE, P107
[5]  
Sofos E., 2021, PREPRINT
[6]  
Stein C, 1986, LECT NOTES MONOGRAPH, V7
[7]   SCREENING INTEGERS WITHOUT LARGE PRIME FACTORS [J].
TENENBAUM, G .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1993, 345 (1676) :377-384
[8]  
Tenenbaum G., 2015, Graduate Studies in Mathematics, V163
[9]  
Tenenbaum G, 2019, J THEOR NOMBR BORDX, V31, P747