A DATASET FOR INDIVIDUAL TREE DELINEATION FROM 3D POINT CLOUD DATA

被引:0
作者
Song, Qian [1 ]
Zhu, Xiao Xiang [1 ]
机构
[1] Tech Univ Munich TUM, Chair Data Sci Earth Observat, Munich, Germany
来源
IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM | 2023年
关键词
Individual tree delineation (ITD); point cloud; forest; forest monitoring; RECONSTRUCTION;
D O I
10.1109/IGARSS52108.2023.10282259
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
LiDAR scanning data, which is able to acquire the vertical structures of forests, is of great potential in forest monitoring and biodiversity quantification. Besides, the derivation of some forest indices, such as biomass, relies on individual tree delineation (ITD). In this paper, we generated a dataset for individual tree delineation using LiDAR-derived point clouds. This dataset can be used to fairly compare different ITD methods and to develop deep learning algorithms for tree segmentation. The acquired LiDAR data consist of 0.94 billion points covering an area of about 31 km2 in the Netherlands. We first used a rule-based algorithm to remove non-tree points. And then a mean shift clustering method is utilized to segment the points. Besides, we proposed a method that compares the highest point in the same cluster to evaluate the delineation results. In the future, the derived segmentation result will be compared with existing individual tree delineation algorithms.
引用
收藏
页码:1369 / 1372
页数:4
相关论文
共 13 条
[1]   Accurate delineation of individual tree crowns in tropical forests from aerial RGB imagery using Mask R-CNN [J].
Ball, James G. C. ;
Hickman, Sebastian H. M. ;
Jackson, Tobias D. D. ;
Koay, Xian Jing ;
Hirst, James ;
Jay, William ;
Archer, Matthew ;
Aubry-Kientz, Melaine ;
Vincent, Gregoire ;
Coomes, David A. A. .
REMOTE SENSING IN ECOLOGY AND CONSERVATION, 2023, 9 (05) :641-655
[2]   Mean shift: A robust approach toward feature space analysis [J].
Comaniciu, D ;
Meer, P .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2002, 24 (05) :603-619
[3]   Tree Crown Detection and Delineation in a Temperate Deciduous Forest from UAV RGB Imagery Using Deep Learning Approaches: Effects of Spatial Resolution and Species Characteristics [J].
Gan, Yi ;
Wang, Quan ;
Iio, Atsuhiro .
REMOTE SENSING, 2023, 15 (03)
[4]   The global forest/non-forest map from TanDEM-X interferometric SAR data [J].
Martone, Michele ;
Rizzoli, Paola ;
Wecklich, Christopher ;
Gonzalez, Carolina ;
Bueso-Bello, Jose-Luis ;
Valdo, Paolo ;
Schulze, Daniel ;
Zink, Manfred ;
Krieger, Gerhard ;
Moreira, Alberto .
REMOTE SENSING OF ENVIRONMENT, 2018, 205 :352-373
[5]   Individual tree crown delineation from high-resolution UAV images in broadleaf forest [J].
Miraki, Mojdeh ;
Sohrabi, Hormoz ;
Fatehi, Parviz ;
Kneubuehler, Mathias .
ECOLOGICAL INFORMATICS, 2021, 61
[6]   FRONTS PROPAGATING WITH CURVATURE-DEPENDENT SPEED - ALGORITHMS BASED ON HAMILTON-JACOBI FORMULATIONS [J].
OSHER, S ;
SETHIAN, JA .
JOURNAL OF COMPUTATIONAL PHYSICS, 1988, 79 (01) :12-49
[7]   Reconstruction of individual trees from multi-aspect TomoSAR data [J].
Schmitt, Michael ;
Shahzad, Muhammad ;
Zhu, Xiao Xiang .
REMOTE SENSING OF ENVIRONMENT, 2015, 165 :175-185
[8]  
Silva Carlos Alberto, 2022, METHODS ECOLOGY EVOL
[9]   TOWARDS GLOBAL FOREST BIOMASS ESTIMATORS FROM TREE HEIGHT DATA [J].
Song, Qian ;
Albrecht, Conrad M. ;
Xiong, Zhitong ;
Zhu, Xiao Xiang .
2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, :5652-5655
[10]  
Song Qian, 2023, ARXIV230509555