ON LARGE l1-SUMS OF LIPSCHITZ-FREE SPACES AND APPLICATIONS

被引:2
作者
Candido, Leondro [1 ]
Guzman, Hector H. T. [1 ]
机构
[1] Univ Fed Sao Paulo UNIFESP, Dept Matemat, Inst Ciencia & Tecnol, Sao Jose Dos Campos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Lipschitz -free spaces; spaces of Lipschitz functions; spaces of contin; BANACH-SPACES;
D O I
10.1090/proc/16206
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
. We prove that the Lipschitz-free space over a Banach space X of density kappa, denoted by F(X), is linearly isomorphic to its l(1)-sum (circle plus k F(X)).e1. This provides an extension of a previous result from Kaufmann in the context of non-separable Banach spaces. Further, we obtain a complete classification of the spaces of real-valued Lipschitz functions that vanish at 0 over a Lp-space. More precisely, we establish that, for every 1 <= p <= infinity, if X is a Lp-space of density kappa, then Lip(0)(X) is either isomorphic to Lip(0)(lp(kappa)) if p < infinity, or Lip(0)(c(0)(kappa)) if p = infinity.
引用
收藏
页码:1135 / 1145
页数:11
相关论文
共 17 条
[1]   LIPSCHITZ FREE SPACES ISOMORPHIC TO THEIR INFINITE SUMS AND GEOMETRIC APPLICATIONS [J].
Albiac, Fernando ;
Ansorena, Jose L. ;
Cuth, Marek ;
Doucha, Michal .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (10) :7281-7312
[2]   Compact reduction in Lipschitz-free spaces [J].
Aliaga, Ramon J. ;
Nous, Camille ;
Petitjean, Colin ;
Prochazka, Antonin .
STUDIA MATHEMATICA, 2021, 260 (03) :341-359
[3]   ON THE GEOMETRY OF BANACH SPACES OF THE FORM Lip0(C(K)) [J].
Candido, Leandro ;
Kaufmann, Pedro L. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (08) :3335-3345
[4]   Isomorphisms between spaces of Lipschitz functions [J].
Candido, Leandro ;
Cuth, Marek ;
Doucha, Michal .
JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 277 (08) :2697-2727
[5]  
Diestel J., 1995, Absolutely Summing Operators, DOI [10.1017/CBO9780511526138, DOI 10.1017/CBO9780511526138]
[6]   The Lipschitz free Banach spaces of C(K)-spaces [J].
Dutrieux, Y ;
Ferenczi, V .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (04) :1039-1044
[7]  
Godefroy G., 2015, Comment. Math., V55, P89, DOI [10.14708/cm.v55i2.1104 (cit. on p. 14, DOI 10.14708/CM.V55I2.1104(CIT.ONP.14]
[8]   Some remarks on the structure of Lipschitz-free spaces [J].
Hajek, Petr ;
Novotny, Matej .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2017, 24 (02) :283-304
[9]  
Hindman Neil, 1998, DEGRUYTER EXPOSITION, V27, DOI [10.1515/9783110809220, DOI 10.1515/9783110809220]
[10]   COMPLEMENTARY UNIVERSAL CONJUGATE BANACH SPACE AND ITS RELATION TO APPROXIMATION PROBLEM [J].
JOHNSON, WB .
ISRAEL JOURNAL OF MATHEMATICS, 1972, 13 (3-4) :301-310