High-precision and real-time visual tracking algorithm based on the Siamese network for autonomous driving

被引:2
作者
Lyu, Pengfei [1 ]
Wei, Minxiang [1 ]
Wu, Yuwei [2 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Energy & Power Engn, Nanjing, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Coll Mech & Elect Engn, Nanjing, Peoples R China
关键词
Visual object tracking; Siamese network; Deep learning; Autonomous driving; Attention mechanism; OBJECT TRACKING;
D O I
10.1007/s11760-022-02331-y
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Visual object tracking is often used to track obstacles in autonomous driving tasks. It requires real-time performance while dealing with target deformation and illumination changes. To solve the above problems, this paper proposes a high-precision and real-time visual tracking algorithm for autonomous driving based on the Siamese network. First, our tracker utilizes ensemble learning to fuse two feature extraction branches that are derived from the convolutional neural network. Then, the channel attention mechanism is added before concatenation to redistribute feature weights. Finally, a region proposal network is adopted to generate tracking bounding boxes. Extensive experiments demonstrate that compared with the state-of-the-art algorithms, the proposed method achieves satisfactory results on four benchmark datasets while maintaining a higher frame rate. Also, the qualitative analysis results on the KITTI dataset indicate that our method can meet the challenges in autonomous driving.
引用
收藏
页码:1235 / 1243
页数:9
相关论文
共 30 条
[1]   Fully-Convolutional Siamese Networks for Object Tracking [J].
Bertinetto, Luca ;
Valmadre, Jack ;
Henriques, Joao F. ;
Vedaldi, Andrea ;
Torr, Philip H. S. .
COMPUTER VISION - ECCV 2016 WORKSHOPS, PT II, 2016, 9914 :850-865
[2]   Unveiling the Power of Deep Tracking [J].
Bhat, Goutam ;
Johnander, Joakim ;
Danelljan, Martin ;
Khan, Fahad Shahbaz ;
Felsberg, Michael .
COMPUTER VISION - ECCV 2018, PT II, 2018, 11206 :493-509
[3]   ECO: Efficient Convolution Operators for Tracking [J].
Danelljan, Martin ;
Bhat, Goutam ;
Khan, Fahad Shahbaz ;
Felsberg, Michael .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :6931-6939
[4]   Discriminative Scale Space Tracking [J].
Danelljan, Martin ;
Hager, Gustav ;
Khan, Fahad Shahbaz ;
Felsberg, Michael .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (08) :1561-1575
[5]   Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking [J].
Danelljan, Martin ;
Robinson, Andreas ;
Khan, Fahad Shahbaz ;
Felsberg, Michael .
COMPUTER VISION - ECCV 2016, PT V, 2016, 9909 :472-488
[6]   Occlusion-Aware Real-Time Object Tracking [J].
Dong, Xingping ;
Shen, Jianbing ;
Yu, Dajiang ;
Wang, Wenguan ;
Liu, Jianhong ;
Huang, Hua .
IEEE TRANSACTIONS ON MULTIMEDIA, 2017, 19 (04) :763-771
[7]   Aberrance suppressed spatio-temporal correlation filters for visual object tracking [J].
Elayaperumal, Dinesh ;
Joo, Young Hoon .
PATTERN RECOGNITION, 2021, 115
[8]  
Geiger A., 2012, C COMP VIS PATT REC
[9]  
Hu J, 2018, PROC CVPR IEEE, P7132, DOI [10.1109/TPAMI.2019.2913372, 10.1109/CVPR.2018.00745]
[10]   Guidance and control methodologies for marine vehicles: A survey [J].
Karimi, Hamid Reza ;
Lu, Yanyang .
CONTROL ENGINEERING PRACTICE, 2021, 111 (111)