New oscillation criteria and some refinements for second-order neutral delay dynamic equations on time scales

被引:4
作者
Hassan, A. M. [1 ]
Affan, S. E. [1 ]
机构
[1] Benha Univ, Fac Sci, Dept Math, Banha 13518, Egypt
来源
JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS | 2023年 / 28卷 / 02期
关键词
Second order; nonlinear dynamic equations; oscillation; Riccati transformation; BOUNDEDNESS; THEOREMS; EVEN;
D O I
10.22436/jmcs.028.02.07
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we present more effective criteria for oscillation of second-order half-linear neutral dynamic equations with delayed arguments. Our results essentially improve, complement, and simplify several related ones in the literature. Some examples are given to illustrate our main results.
引用
收藏
页码:192 / 202
页数:11
相关论文
共 38 条
[1]  
Agarwal R.P., 2004, Nonoscillation and oscillation: Theory for functional differential equations, Monographs and, DOI [10.1201/9780203025741, DOI 10.1201/9780203025741]
[2]  
Agarwal R. P., 2002, OSCILLATION THEORY 2, P1
[3]   Philos-type oscillation criteria for second order half-linear dynamic equations on time scales [J].
Agarwal, Ravi P. ;
O'Regan, Donal ;
Saker, S. H. .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2007, 37 (04) :1085-1104
[4]  
[Anonymous], 1991, Oscillation Theory of Delay Differential Equations with Applications
[5]   Comparison theorems for higher-order neutral delay differential equations [J].
Baculíková B. ;
Džurina J. .
Journal of Applied Mathematics and Computing, 2015, 49 (1-2) :107-118
[6]   Oscillation theorems for second-order nonlinear neutral differential equations [J].
Baculikova, B. ;
Dzurina, J. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (12) :4472-4478
[7]  
Bohner M., 2012, DYNAMIC EQUATIONS TI
[8]   Fite-Hille-Wintner-type oscillation criteria for second-order half-linear dynamic equations with deviating arguments [J].
Bohner, Martin ;
Hassan, Taher S. ;
Li, Tongxing .
INDAGATIONES MATHEMATICAE-NEW SERIES, 2018, 29 (02) :548-560
[9]   Oscillation criteria for second-order neutral delay differential equations [J].
Bohner, Martin ;
Grace, Said R. ;
Jadlovska, Irena .
ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2017, (60) :1-12
[10]   Kamenev-type criteria for nonlinear damped dynamic equations [J].
Bohner Martin ;
Li TongXing .
SCIENCE CHINA-MATHEMATICS, 2015, 58 (07) :1445-1452