Infinite Energy Quasi-Periodic Solutions to Nonlinear Schrodinger Equations on R

被引:1
作者
Wang, W-M [1 ,2 ]
机构
[1] Cergy Paris Univ, CNRS, F-95302 Cergy Pontoise, France
[2] Cergy Paris Univ, Dept Math, F-95302 Cergy Pontoise, France
关键词
ANDERSON LOCALIZATION; OPERATORS; KAM;
D O I
10.1093/imrn/rnab327
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a set of smooth infinite energy global solutions (without spatial symmetry) to the non-integrable, nonlinear Schrodinger equations on R. These solutions are space-time quasi-periodic with two frequencies each. Previous results [3, 4], and the generalization [32], are quasi-periodic in time, but periodic in space. This paper generalizes J. Bourgain's [5] semi-algebraic set method to analyze nonlinear PDEs, in the non-compact space quasi-periodic setting on R.
引用
收藏
页码:7201 / 7258
页数:58
相关论文
共 35 条