Deep transfer learning based on dynamic domain adaptation for remaining useful life prediction under different working conditions

被引:44
|
作者
Cheng, Han [1 ]
Kong, Xianguang [1 ]
Wang, Qibin [1 ]
Ma, Hongbo [1 ]
Yang, Shengkang [1 ]
Chen, Gaige [1 ]
机构
[1] Xidian Univ, Sch Mechanoelect Engn, Xian 710071, Peoples R China
基金
中国国家自然科学基金;
关键词
Remaining useful life prediction; Dynamic domain adaptation; Domain invariance degradation feature; Multiple working conditions; CONVOLUTIONAL NEURAL-NETWORK; PROGNOSTICS; FRAMEWORK;
D O I
10.1007/s10845-021-01814-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Remaining useful life (RUL) prediction can effectively avoid unexpected mechanical breakdowns, thus improving operational reliability. However, the distribution discrepancy caused by different working conditions may lead to deterioration in the prognostic task of machinery. Inspired by the idea of transfer learning, a novel intelligent approach based on dynamic domain adaptation (DDA) is proposed for the machinery RUL prediction of multiple working conditions in this paper. At first, reverse validation technology is utilized to select appropriate source samples to construct the training dataset. Then two dynamic domain adaptation networks are trained to extract domain invariant degradation feature and predict RUL, namely dynamic distribution adaptation network and dynamic adversarial adaptation network. In the dynamic domain adaptation network, the fuzzy set theory is employed to calculate conditional distribution discrepancy loss, and the dynamic adaptive factor is introduced to dynamically adjust the distribution weights. Finally, the proposed method is proved to be effective through two run-to-failure bearing datasets. Related experimental results indicate that, compared with other related RUL prediction methods, the DDA-based prognostic method not only achieves better prediction performance, but also avoids the influence of negative transfer and distribution weight fluctuation.
引用
收藏
页码:587 / 613
页数:27
相关论文
共 50 条
  • [21] A novel method for journal bearing degradation evaluation and remaining useful life prediction under different working conditions
    Ding, Ning
    Li, Hulin
    Yin, Zhongwei
    Jiang, Fangmin
    MEASUREMENT, 2021, 177
  • [22] Remaining Useful Life Prediction of PV Systems Under Dynamic Environmental Conditions
    Liu, Qifang
    Hu, Qingpei
    Zhou, Jinfeng
    Yu, Dan
    Mo, Huadong
    IEEE JOURNAL OF PHOTOVOLTAICS, 2023, 13 (04): : 590 - 602
  • [23] Universal remaining useful life prediction for OECTs under different aging conditions
    Xu, Jie
    Xiao, Kunshu
    Wu, Xinhao
    Pan, Tongjie
    Huang, Cheng-Geng
    Huang, Wei
    Ye, Yalan
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2025, 36 (01)
  • [24] Remaining Useful Life Prediction based on Multisource Domain Transfer and Unsupervised Alignment
    Lv, Yi
    Zhou, Ningxu
    Wen, Zhenfei
    Shen, Zaichen
    Chen, Aiguo
    EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY, 2025, 27 (02):
  • [25] Remaining Useful Life Prediction using Deep Learning Approaches: A Review
    Wang, Youdao
    Zhao, Yifan
    Addepalli, Sri
    PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON THROUGH-LIFE ENGINEERING SERVICES (TESCONF 2019), 2020, 49 : 81 - 88
  • [26] Controlled physics-informed data generation for deep learning-based remaining useful life prediction under unseen operation conditions
    Xiong, Jiawei
    Fink, Olga
    Zhou, Jian
    Ma, Yizhong
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 197
  • [27] A New Strategy: Remaining Useful Life Prediction of Wind Power Bearings Based on Deep Learning under Data Missing Conditions
    Li, Xuejun
    Lei, Xu
    Jiang, Lingli
    Yang, Tongguang
    Ge, Zhenyu
    MATHEMATICS, 2024, 12 (13)
  • [28] Contrastive Adversarial Domain Adaptation for Machine Remaining Useful Life Prediction
    Ragab, Mohamed
    Chen, Zhenghua
    Wu, Min
    Foo, Chuan Sheng
    Kwoh, Chee Keong
    Yan, Ruqiang
    Li, Xiaoli
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (08) : 5239 - 5249
  • [29] An adversarial transfer network with supervised metric for remaining useful life prediction of rolling bearing under multiple working conditions
    Zhuang, Jichao
    Jia, Minping
    Zhao, Xiaoli
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2022, 225
  • [30] A CNN-LSTM-based domain adaptation model for remaining useful life prediction
    Liu, Huixiang
    Chen, Wenbai
    Chen, Weizhao
    Gu, Yu
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2022, 33 (11)