Deep transfer learning based on dynamic domain adaptation for remaining useful life prediction under different working conditions

被引:51
作者
Cheng, Han [1 ]
Kong, Xianguang [1 ]
Wang, Qibin [1 ]
Ma, Hongbo [1 ]
Yang, Shengkang [1 ]
Chen, Gaige [1 ]
机构
[1] Xidian Univ, Sch Mechanoelect Engn, Xian 710071, Peoples R China
基金
中国国家自然科学基金;
关键词
Remaining useful life prediction; Dynamic domain adaptation; Domain invariance degradation feature; Multiple working conditions; CONVOLUTIONAL NEURAL-NETWORK; PROGNOSTICS; FRAMEWORK;
D O I
10.1007/s10845-021-01814-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Remaining useful life (RUL) prediction can effectively avoid unexpected mechanical breakdowns, thus improving operational reliability. However, the distribution discrepancy caused by different working conditions may lead to deterioration in the prognostic task of machinery. Inspired by the idea of transfer learning, a novel intelligent approach based on dynamic domain adaptation (DDA) is proposed for the machinery RUL prediction of multiple working conditions in this paper. At first, reverse validation technology is utilized to select appropriate source samples to construct the training dataset. Then two dynamic domain adaptation networks are trained to extract domain invariant degradation feature and predict RUL, namely dynamic distribution adaptation network and dynamic adversarial adaptation network. In the dynamic domain adaptation network, the fuzzy set theory is employed to calculate conditional distribution discrepancy loss, and the dynamic adaptive factor is introduced to dynamically adjust the distribution weights. Finally, the proposed method is proved to be effective through two run-to-failure bearing datasets. Related experimental results indicate that, compared with other related RUL prediction methods, the DDA-based prognostic method not only achieves better prediction performance, but also avoids the influence of negative transfer and distribution weight fluctuation.
引用
收藏
页码:587 / 613
页数:27
相关论文
共 62 条
[1]   A reliable technique for remaining useful life estimation of rolling element bearings using dynamic regression models [J].
Ahmad, Wasim ;
Khan, Sheraz Ali ;
Islam, M. M. Manjurul ;
Kim, Jong-Myon .
RELIABILITY ENGINEERING & SYSTEM SAFETY, 2019, 184 :67-76
[2]  
Ben-David Shai, 2006, Advances in Neural Information Processing Systems (NeurIPS), V19
[3]   Health assessment and life prediction of cutting tools based on support vector regression [J].
Benkedjouh, T. ;
Medjaher, K. ;
Zerhouni, N. ;
Rechak, S. .
JOURNAL OF INTELLIGENT MANUFACTURING, 2015, 26 (02) :213-223
[4]   Remaining useful life estimation based on nonlinear feature reduction and support vector regression [J].
Benkedjouh, T. ;
Medjaher, K. ;
Zerhouni, N. ;
Rechak, S. .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2013, 26 (07) :1751-1760
[5]   Prediction of Remaining Useful Life of Wind Turbine Bearings under Non-Stationary Operating Conditions [J].
Cao, Lixiao ;
Qian, Zheng ;
Zareipour, Hamid ;
Wood, David ;
Mollasalehi, Ehsan ;
Tian, Shuangshu ;
Pei, Yan .
ENERGIES, 2018, 11 (12)
[6]   The framework design of smart factory in discrete manufacturing industry based on cyber-physical system [J].
Chen, Gaige ;
Wang, Pei ;
Feng, Bo ;
Li, Yihui ;
Liu, Dekun .
INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING, 2020, 33 (01) :79-101
[7]   Machine Remaining Useful Life Prediction via an Attention-Based Deep Learning Approach [J].
Chen, Zhenghua ;
Wu, Min ;
Zhao, Rui ;
Guretno, Feri ;
Yan, Ruqiang ;
Li, Xiaoli .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2021, 68 (03) :2521-2531
[8]   Transferable convolutional neural network based remaining useful life prediction of bearing under multiple failure behaviors [J].
Cheng, Han ;
Kong, Xianguang ;
Chen, Gaige ;
Wang, Qibin ;
Wang, Rongbo .
MEASUREMENT, 2021, 168
[9]   A Survey on Deep Transfer Learning [J].
Tan, Chuanqi ;
Sun, Fuchun ;
Kong, Tao ;
Zhang, Wenchang ;
Yang, Chao ;
Liu, Chunfang .
ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2018, PT III, 2018, 11141 :270-279
[10]   Remaining useful lifetime prediction via deep domain adaptation [J].
da Costa, Paulo Roberto de Oliveira ;
Akcay, Alp ;
Zhang, Yingqian ;
Kaymak, Uzay .
RELIABILITY ENGINEERING & SYSTEM SAFETY, 2020, 195