Deep transfer learning based on dynamic domain adaptation for remaining useful life prediction under different working conditions

被引:45
|
作者
Cheng, Han [1 ]
Kong, Xianguang [1 ]
Wang, Qibin [1 ]
Ma, Hongbo [1 ]
Yang, Shengkang [1 ]
Chen, Gaige [1 ]
机构
[1] Xidian Univ, Sch Mechanoelect Engn, Xian 710071, Peoples R China
基金
中国国家自然科学基金;
关键词
Remaining useful life prediction; Dynamic domain adaptation; Domain invariance degradation feature; Multiple working conditions; CONVOLUTIONAL NEURAL-NETWORK; PROGNOSTICS; FRAMEWORK;
D O I
10.1007/s10845-021-01814-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Remaining useful life (RUL) prediction can effectively avoid unexpected mechanical breakdowns, thus improving operational reliability. However, the distribution discrepancy caused by different working conditions may lead to deterioration in the prognostic task of machinery. Inspired by the idea of transfer learning, a novel intelligent approach based on dynamic domain adaptation (DDA) is proposed for the machinery RUL prediction of multiple working conditions in this paper. At first, reverse validation technology is utilized to select appropriate source samples to construct the training dataset. Then two dynamic domain adaptation networks are trained to extract domain invariant degradation feature and predict RUL, namely dynamic distribution adaptation network and dynamic adversarial adaptation network. In the dynamic domain adaptation network, the fuzzy set theory is employed to calculate conditional distribution discrepancy loss, and the dynamic adaptive factor is introduced to dynamically adjust the distribution weights. Finally, the proposed method is proved to be effective through two run-to-failure bearing datasets. Related experimental results indicate that, compared with other related RUL prediction methods, the DDA-based prognostic method not only achieves better prediction performance, but also avoids the influence of negative transfer and distribution weight fluctuation.
引用
收藏
页码:587 / 613
页数:27
相关论文
共 50 条
  • [1] Deep transfer learning based on dynamic domain adaptation for remaining useful life prediction under different working conditions
    Han Cheng
    Xianguang Kong
    Qibin Wang
    Hongbo Ma
    Shengkang Yang
    Gaige Chen
    Journal of Intelligent Manufacturing, 2023, 34 : 587 - 613
  • [2] Remaining useful life prediction of bearings under different working conditions using a deep feature disentanglement based transfer learning method
    Hu, Tao
    Guo, Yiming
    Gu, Liudong
    Zhou, Yifan
    Zhang, Zhisheng
    Zhou, Zhiting
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2022, 219
  • [3] Transfer Prediction Method of Bearing Remaining Useful Life Based on Deep Feature Evaluation under Different Working Conditions
    Liu, Yongzhi
    Zou, Yisheng
    Zhang, Kai
    Lazaridis, Pavlos
    SENSORS, 2023, 23 (19)
  • [4] Transfer Learning for Remaining Useful Life Prediction Across Operating Conditions Based on Multisource Domain Adaptation
    Ding, Yifei
    Ding, Peng
    Zhao, Xiaoli
    Cao, Yudong
    Jia, Minping
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2022, 27 (05) : 4143 - 4152
  • [5] A Deep Domain Adaptative Network for Remaining Useful Life Prediction of Machines Under Different Working Conditions and Fault Modes
    Miao, Mengqi
    Yu, Jianbo
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [6] Deep Transfer Learning Remaining Useful Life Prediction of Different Bearings
    Xu, Juan
    Fang, Mengting
    Zhao, Weihua
    Fan, Yuqi
    Ding, Xu
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [7] A Selective Adversarial Adaptation Network for Remaining Useful Life Prediction of Machines Under Different Working Conditions
    Ye, Zhuang
    Yu, Jianbo
    IEEE SYSTEMS JOURNAL, 2023, 17 (01): : 62 - 71
  • [8] A novel remaining useful life prediction based on transfer hybrid deep neural network under variable working conditions
    Xia, Yunzhong
    Li, Wanxiang
    Ren, Weijia
    PHYSICA SCRIPTA, 2024, 99 (10)
  • [9] A Novel Transfer Ensemble Learning Framework for Remaining Useful Life Prediction Under Multiple Working Conditions
    Tian, Jilun
    Jiang, Yuchen
    Zhang, Jiusi
    Wu, Shimeng
    Luo, Hao
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [10] A sparse domain adaption network for remaining useful life prediction of rolling bearings under different working conditions
    Miao, Mengqi
    Yu, Jianbo
    Zhao, Zhihong
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2022, 219