ON MOMENTS OF DOWNWARD PASSAGE TIMES FOR SPECTRALLY NEGATIVE LEVY PROCESSES

被引:0
|
作者
Behme, Anita [1 ]
Strietzel, Philipp Lukas [1 ]
机构
[1] Tech Univ Dresden, Inst Math Stochast, Helmholtzstr 10, D-01069 Dresden, Germany
关键词
Conjugate subordinator; Cramer-Lundberg risk process; exit time; fluctuation theory; first hitting time; fractional calculus; moments; ruin theory; spectrally negative Levy process; subordinator; time to ruin; SCALE FUNCTIONS;
D O I
10.1017/jpr.2022.70
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The existence of moments of first downward passage times of a spectrally negative Levy process is governed by the general dynamics of the Levy process, i.e. whether it is drifting to +infinity, -infinity, or oscillating. Whenever the Levy process drifts to +infinity, we prove that the Kth moment of the first passage time (conditioned to be finite) exists if and only if the (K + 1)th moment of the Levy jump measure exists. This generalizes a result shown earlier by Delbaen for Cramer-Lundberg risk processes. Whenever the Levy process drifts to -infinity, we prove that all moments of the first passage time exist, while for an oscillating Levy process we derive conditions for non-existence of the moments, and in particular we show that no integer moments exist.
引用
收藏
页码:452 / 464
页数:13
相关论文
共 50 条
  • [41] Old and New Examples of Scale Functions for Spectrally Negative Levy Processes
    Hubalek, F.
    Kyprianou, E.
    SEMINAR ON STOCHASTIC ANALYSIS, RANDOM FIELDS AND APPLICATIONS VI, 2011, 63 : 119 - +
  • [42] An optimal dividends problem with transaction costs for spectrally negative Levy processes
    Loeffen, R. L.
    INSURANCE MATHEMATICS & ECONOMICS, 2009, 45 (01): : 41 - 48
  • [43] Alternative Approach to the Optimality of the Threshold Strategy for Spectrally Negative Levy Processes
    Shen, Ying
    Yin, Chuan-cun
    Yuen, Kam Chuen
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2013, 29 (04): : 705 - 716
  • [44] LAST EXIT BEFORE AN EXPONENTIAL TIME FOR SPECTRALLY NEGATIVE LEVY PROCESSES
    Baurdoux, E. J.
    JOURNAL OF APPLIED PROBABILITY, 2009, 46 (02) : 542 - 558
  • [45] A martingale review of some fluctuation theory for spectrally negative Levy processes
    Kyprianou, AE
    Palmowski, Z
    SEMINAIRE DE PROBABILITIES XXXVIII, 2005, 1857 : 16 - 29
  • [46] Special, conjugate and complete scale functions for spectrally negative Levy processes
    Kyprianou, A. E.
    Rivero, V.
    ELECTRONIC JOURNAL OF PROBABILITY, 2008, 13 : 1672 - 1701
  • [47] On taxed spectrally negative Levy processes with draw-down stopping
    Avram, Florin
    Nhat Linh Vu
    Zhou, Xiaowen
    INSURANCE MATHEMATICS & ECONOMICS, 2017, 76 : 69 - 74
  • [48] A unified approach to ruin probabilities with delays for spectrally negative Levy processes
    Lkabous, Mohamed Amine
    Renaud, Jean-Francois
    SCANDINAVIAN ACTUARIAL JOURNAL, 2019, : 711 - 728
  • [49] DRAW-DOWN PARISIAN RUIN FOR SPECTRALLY NEGATIVE LEVY PROCESSES
    Wang, Wenyuan
    Zhou, Xiaowen
    ADVANCES IN APPLIED PROBABILITY, 2020, 52 (04) : 1164 - 1196
  • [50] The excursion measure away from zero for spectrally negative Levy processes
    Pardo, J. C.
    Perez, J. L.
    Rivero, V. M.
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2018, 54 (01): : 75 - 99