ON MOMENTS OF DOWNWARD PASSAGE TIMES FOR SPECTRALLY NEGATIVE LEVY PROCESSES

被引:0
作者
Behme, Anita [1 ]
Strietzel, Philipp Lukas [1 ]
机构
[1] Tech Univ Dresden, Inst Math Stochast, Helmholtzstr 10, D-01069 Dresden, Germany
关键词
Conjugate subordinator; Cramer-Lundberg risk process; exit time; fluctuation theory; first hitting time; fractional calculus; moments; ruin theory; spectrally negative Levy process; subordinator; time to ruin; SCALE FUNCTIONS;
D O I
10.1017/jpr.2022.70
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The existence of moments of first downward passage times of a spectrally negative Levy process is governed by the general dynamics of the Levy process, i.e. whether it is drifting to +infinity, -infinity, or oscillating. Whenever the Levy process drifts to +infinity, we prove that the Kth moment of the first passage time (conditioned to be finite) exists if and only if the (K + 1)th moment of the Levy jump measure exists. This generalizes a result shown earlier by Delbaen for Cramer-Lundberg risk processes. Whenever the Levy process drifts to -infinity, we prove that all moments of the first passage time exist, while for an oscillating Levy process we derive conditions for non-existence of the moments, and in particular we show that no integer moments exist.
引用
收藏
页码:452 / 464
页数:13
相关论文
共 19 条
[1]   Exponential moments of first passage times and related quantities for Levy processes [J].
Aurzada, Frank ;
Iksanov, Alexander ;
Meiners, Matthias .
MATHEMATISCHE NACHRICHTEN, 2015, 288 (17-18) :1921-1938
[2]   TheW,Zscale functions kit for first passage problems of spectrally negative Levy processes, and applications to control problems [J].
Avram, Florin ;
Grahovac, Danijel ;
Vardar-Acar, Ceren .
ESAIM-PROBABILITY AND STATISTICS, 2020, 24 :454-525
[3]   A REMARK ON THE MOMENTS OF RUIN TIME IN CLASSICAL RISK THEORY [J].
DELBAEN, F .
INSURANCE MATHEMATICS & ECONOMICS, 1990, 9 (2-3) :121-126
[4]   HITTING PROBABILITIES FOR SPECTRALLY POSITIVE LEVY PROCESSES [J].
DONEY, RA .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1991, 44 :566-576
[5]  
Doney Ronald A., 2007, Lecture Notes in Mathematics, V1897
[6]   The curious history of Faa di Bruno's formula [J].
Johnson, WP .
AMERICAN MATHEMATICAL MONTHLY, 2002, 109 (03) :217-234
[7]   The hitting time of zero for a stable process [J].
Kuznetsov, A. ;
Kyprianou, A. E. ;
Pardo, J. C. ;
Watson, A. R. .
ELECTRONIC JOURNAL OF PROBABILITY, 2014, 19 :1-26
[8]   The Theory of Scale Functions for Spectrally Negative Levy Processes [J].
Kuznetsov, Alexey ;
Kyprianou, Andreas E. ;
Rivero, Victor .
LEVY MATTERS II: RECENT PROGRESS IN THEORY AND APPLICATIONS: FRACTIONAL LEVY FIELDS, AND SCALE FUNCTIONS, 2012, 2061 :97-186
[9]   Special, conjugate and complete scale functions for spectrally negative Levy processes [J].
Kyprianou, A. E. ;
Rivero, V. .
ELECTRONIC JOURNAL OF PROBABILITY, 2008, 13 :1672-1701
[10]  
Kyprianou A.E., 2014, Fluctuations of L'evy processes with applications, Vsecond