Fixed points theorems for enriched non-expansive mappings in geodesic spaces

被引:2
作者
Ali, Javid [1 ]
Jubair, Mohd [1 ]
机构
[1] Aligarh Muslim Univ, Dept Math, Aligarh 202002, Uttar Pradesh, India
关键词
CAT(0) space; Enriched non-expansive mapping; Delta-convergence; Strong convergence; Simplified Mann iteration; Fixed points; CONVERGENCE;
D O I
10.2298/FIL2311403A
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to extend a class of enriched non-expansive mappings from linear spaces to nonlinear spaces, namely, geodesic metric spaces of non-positive curvature. We prove that an enriched non-expansive mapping in complete CAT(0) space has fixed points. Moreover, we also propose simplified Mann iteration process to approximate fixed points of enriched non-expansive mappings by Delta and strong convergence in CAT(0) spaces.
引用
收藏
页码:3403 / 3409
页数:7
相关论文
共 15 条
[1]  
Baillon J. B., 1978, Houston Journal of Mathematics, V4, P1
[2]  
Berinde V, 2019, CARPATHIAN J MATH, V35, P293
[3]  
Bridson M., 1999, METRIC SPACES NONPOS, DOI [10.1007/978-3-662-12494-9, DOI 10.1007/978-3-662-12494-9]
[4]  
Bruhat F., 1972, Publications Mathematiques de l'Institut des Hautes Etudes Scientifiques, V41, P5
[5]  
Dhompongsa S, 2007, J NONLINEAR CONVEX A, V8, P35
[6]   Fixed points of uniformly lipschitzian mappings [J].
Dhompongsa, S. ;
Kirk, W. A. ;
Sims, Brailey .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 65 (04) :762-772
[7]   On Δ-convergence theorems in CAT(0) spaces [J].
Dhompongsa, S. ;
Panyanak, B. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (10) :2572-2579
[8]  
Goebel K., 1984, UNIFORM CONVEXITY HY, V83
[9]   A concept of convergence in geodesic spaces [J].
Kirk, W. A. ;
Panyanak, B. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (12) :3689-3696
[10]  
Kirk W. A, 2003, COLECCIN ABIERTA, V64