The Development and Internal Evaluation of a Predictive Model to Identify for Whom Mindfulness-Based Cognitive Therapy Offers Superior Relapse Prevention for Recurrent Depression Versus Maintenance Antidepressant Medication

被引:12
作者
Cohen, Zachary D. [1 ]
DeRubeis, Robert J. [2 ]
Hayes, Rachel [3 ]
Watkins, Edward R. [4 ]
Lewis, Glyn [5 ,6 ]
Byng, Richard [6 ,7 ]
Byford, Sarah [8 ]
Crane, Catherine [9 ]
Kuyken, Willem [9 ]
Dalgleish, Tim [10 ,11 ]
Schweizer, Susanne [12 ,13 ]
机构
[1] Univ Calif Los Angeles, Dept Psychiat, Los Angeles, CA 90095 USA
[2] Univ Penn, Dept Psychol, Philadelphia, PA 19104 USA
[3] Univ Exeter, Natl Inst Hlth Res NIHR, Appl Res Collaborat Arc South West Peninsula, Exeter, Devon, England
[4] Univ Exeter, Sir Henry Wellcome Mood Disorder Ctr, Exeter, Devon, England
[5] UCL, Div Psychiat, Faulty Brain Sci, London, England
[6] Univ Plymouth, Community Primary Care Res Grp, Plymouth, Devon, England
[7] Natl Inst Hlth Res Collaborat Leadership Appl Hlt, South West Peninsula, England
[8] Kings Coll London, Inst Psychiat Psychol & Neurosci, Hlth Serv & Populat Res Dept, London, England
[9] Univ Oxford, Dept Psychiat, Med Sci Div, Oxford, England
[10] Univ Cambridge, MRC, Cognit & Brain Sci Unit, Cambridge, England
[11] Cambridgeshire & Peterborough NHS Fdn Trust, Cambridge, England
[12] Univ Cambridge, Dept Psychol, Cambridge, England
[13] Univ New South Wales, Sch Psychol, Sydney, NSW, Australia
基金
英国医学研究理事会; 英国惠康基金;
关键词
antidepressant medication; depression; mindfulness-based cognitive therapy; precision medicine; relapse prevention; SHARED DECISION-MAKING; LONG-TERM USE; STEPPED CARE; SAMPLE-SIZE; SELECTION; REGULARIZATION; IMPUTATION; DISORDERS; VARIABLES; EFFICACY;
D O I
10.1177/21677026221076832
中图分类号
B849 [应用心理学];
学科分类号
040203 ;
摘要
Depression is highly recurrent, even following successful pharmacological and/or psychological intervention. We aimed to develop clinical prediction models to inform adults with recurrent depression choosing between antidepressant medication (ADM) maintenance or switching to mindfulness-based cognitive therapy (MBCT). Using previously published data (N = 424), we constructed prognostic models using elastic-net regression that combined demographic, clinical, and psychological factors to predict relapse at 24 months under ADM or MBCT. Only the ADM model (discrimination performance: area under the curve [AUC] = .68) predicted relapse better than baseline depression severity (AUC = .54; one-tailed DeLong's test: z = 2.8, p = .003). Individuals with the poorest ADM prognoses who switched to MBCT had better outcomes compared with individuals who maintained ADM (48% vs. 70% relapse, respectively; superior survival times, z = -2.7, p = .008). For individuals with moderate to good ADM prognoses, both treatments resulted in similar likelihood of relapse. If replicated, the results suggest that predictive modeling can inform clinical decision-making around relapse prevention in recurrent depression.
引用
收藏
页码:59 / 76
页数:18
相关论文
共 96 条
[71]   Addressing the burden of mental, neurological, and substance use disorders: key messages from Disease Control Priorities, 3rd edition [J].
Patel, Vikram ;
Chisholm, Dan ;
Parikh, Rachana ;
Charlson, Fiona J. ;
Degenhardt, Louisa ;
Dua, Tarun ;
Ferrari, Alize J. ;
Hyman, Steve ;
Laxminarayan, Ramanan ;
Levin, Carol ;
Lund, Crick ;
Medina Mora, Maria Elena ;
Petersen, Inge ;
Scott, James ;
Shidhaye, Rahul ;
Vijayakumar, Lakshmi ;
Thornicroft, Graham ;
Whiteford, Harvey .
LANCET, 2016, 387 (10028) :1672-1685
[72]   A machine learning ensemble to predict treatment outcomes following an Internet intervention for depression [J].
Pearson, Rahel ;
Pisner, Derek ;
Meyer, Bjorn ;
Shumake, Jason ;
Beevers, Christopher G. .
PSYCHOLOGICAL MEDICINE, 2019, 49 (14) :2330-2341
[73]   A Clinical Risk Stratification Tool for Predicting Treatment Resistance in Major Depressive Disorder [J].
Perlis, Roy H. .
BIOLOGICAL PSYCHIATRY, 2013, 74 (01) :7-14
[74]   Guideline recommendations for long-term treatment of depression with antidepressants in primary care-a critical review [J].
Piek, Ellen ;
van der Meer, Klaas ;
Nolen, Willem A. .
EUROPEAN JOURNAL OF GENERAL PRACTICE, 2010, 16 (02) :106-112
[75]  
Raats M. M., 1992, Food Quality and Preference, V3, P89, DOI 10.1016/0950-3293(91)90028-D
[76]   Penalization and shrinkage methods produced unreliable clinical prediction models especially when sample size was small [J].
Riley, Richard D. ;
Snell, Kym I. E. ;
Martin, Glen P. ;
Whittle, Rebecca ;
Archer, Lucinda ;
Sperrin, Matthew ;
Collins, Gary S. .
JOURNAL OF CLINICAL EPIDEMIOLOGY, 2021, 132 :88-96
[77]   Implementing Precision Psychiatry: A Systematic Review of Individualized Prediction Models for Clinical Practice [J].
Salazar de Pablo, Gonzalo ;
Studerus, Erich ;
Vaquerizo-Serrano, Julio ;
Irving, Jessica ;
Catalan, Ana ;
Oliver, Dominic ;
Baldwin, Helen ;
Danese, Andrea ;
Fazel, Seena ;
Steyerberg, Ewout W. ;
Stahl, Daniel ;
Fusar-Poli, Paolo .
SCHIZOPHRENIA BULLETIN, 2021, 47 (02) :284-297
[78]  
Schwarzer R., 1995, Measures in health psychology: A user's portfolio. Causal and control beliefs, V35, P37, DOI DOI 10.1037/T00393-000
[79]   Does Illness Attribution Affect Treatment Assignment in Depression? [J].
Schweizer, Susanne ;
Peeters, Frenk ;
Huibers, Marcus ;
Roelofs, Jeffrey ;
van Os, Jim ;
Arntz, Arnoud .
CLINICAL PSYCHOLOGY & PSYCHOTHERAPY, 2010, 17 (05) :418-426
[80]   Comparison of Random Forest and Parametric Imputation Models for Imputing Missing Data Using MICE: A CALIBER Study [J].
Shah, Anoop D. ;
Bartlett, Jonathan W. ;
Carpenter, James ;
Nicholas, Owen ;
Hemingway, Harry .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 2014, 179 (06) :764-774