Interpretable artificial intelligence for classification of alveolar bone defect in patients with cleft lip and palate

被引:10
作者
Miranda, Felicia [1 ,2 ]
Choudhari, Vishakha [1 ]
Barone, Selene [1 ,3 ]
Anchling, Luc [1 ,4 ]
Hutin, Nathan [1 ,4 ]
Gurgel, Marcela [1 ]
Al Turkestani, Najla [1 ,5 ]
Yatabe, Marilia [1 ]
Bianchi, Jonas [6 ]
Aliaga-Del Castillo, Aron [1 ]
Zupelari-Goncalves, Paulo [7 ]
Edwards, Sean [7 ]
Garib, Daniela [2 ,8 ]
Cevidanes, Lucia [1 ]
Prieto, Juan [9 ]
机构
[1] Univ Michigan, Dept Orthodont & Pediat Dent, Sch Dent, Ann Arbor, MI 48109 USA
[2] Univ Sao Paulo, Bauru Dent Sch, Dept Orthodont, Bauru, SP, Brazil
[3] Magna Graecia Univ Catanzaro, Sch Dent, Dept Hlth Sci, Catanzaro, Italy
[4] CPE Lyon, Lyon, France
[5] King Abdulaziz Univ, Dept Restorat & Aesthet Dent, Fac Dent, Jeddah, Saudi Arabia
[6] Univ Pacific, Arthur A Dugoni Sch Dent, Dept Orthodont, San Francisco, CA USA
[7] Univ Michigan, Dept Oral & Maxillofacial Surg, Sch Dent, Ann Arbor, MI USA
[8] Univ Sao Paulo, Hosp Rehabil Craniofacial Anomalies, Dept Orthodont, Bauru, SP, Brazil
[9] Univ N Carolina, Dept Psychiat, Chapel Hill, NC USA
关键词
RESIDUAL ALVEOLAR; SYSTEM;
D O I
10.1038/s41598-023-43125-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cleft lip and/or palate (CLP) is the most common congenital craniofacial anomaly and requires bone grafting of the alveolar cleft. This study aimed to develop a novel classification algorithm to assess the severity of alveolar bone defects in patients with CLP using three-dimensional (3D) surface models and to demonstrate through an interpretable artificial intelligence (AI)-based algorithm the decisions provided by the classifier. Cone-beam computed tomography scans of 194 patients with CLP were used to train and test the performance of an automatic classification of the severity of alveolar bone defect. The shape, height, and width of the alveolar bone defect were assessed in automatically segmented maxillary 3D surface models to determine the ground truth classification index of its severity. The novel classifier algorithm renders the 3D surface models from different viewpoints and captures 2D image snapshots fed into a 2D Convolutional Neural Network. An interpretable AI algorithm was developed that uses features from each view and aggregated via Attention Layers to explain the classification. The precision, recall and F-1 score were 0.823, 0.816, and 0.817, respectively, with agreement ranging from 97.4 to 100% on the severity index within 1 group difference. The new classifier and interpretable AI algorithm presented satisfactory accuracy to classify the severity of alveolar bone defect morphology using 3D surface models of patients with CLP and graphically displaying the features that were considered during the deep learning model's classification decision.
引用
收藏
页数:9
相关论文
共 50 条
[21]   Long-term stability of alveolar bone grafts in cleft palate patients [J].
Toscano, Dominique ;
Baciliero, Ugo ;
Gracco, Antonio ;
Siciliani, Giuseppe .
AMERICAN JOURNAL OF ORTHODONTICS AND DENTOFACIAL ORTHOPEDICS, 2012, 142 (03) :289-299
[22]   Comparison of early and conventional autogenous secondary alveolar bone graft in children with cleft lip and palate: A systematic review [J].
Pinheiro, Fabio Henrique de Sa Leitao ;
Drummond, Robert John ;
Frota, Carolina Martins ;
Bartzela, Theodosia N. ;
dos Santos, Patricia Bittencourt .
ORTHODONTICS & CRANIOFACIAL RESEARCH, 2020, 23 (04) :385-397
[23]   Eruption path of permanent maxillary canines after secondary alveolar bone graft in patients with nonsyndromic complete unilateral cleft lip and palate [J].
Manfio, Aura Sofia Caceres ;
Suri, Sunjay ;
Dupuis, Annie ;
Stevens, Kyle .
AMERICAN JOURNAL OF ORTHODONTICS AND DENTOFACIAL ORTHOPEDICS, 2022, 161 (05) :E416-E428
[24]   Influence of bone-anchored maxillary protraction on secondary alveolar bone graft status in unilateral complete cleft lip and palate [J].
Gomes, Oscar Stangherlin ;
Carvalho, Roberta Martinelli ;
Faco, Renato ;
Yatabe, Marilia ;
Ozawa, Terumi Okada ;
De Clerck, Hugo ;
Timmerman, Hilde ;
Garib, Daniela .
AMERICAN JOURNAL OF ORTHODONTICS AND DENTOFACIAL ORTHOPEDICS, 2020, 158 (05) :731-737
[25]   Cone Beam-CT-Based Bone Volume Assessments of Alveolar Synthetic Bone Graft GlassBONE™ in Cleft Lip and Palate Patients: A Retrospective Study [J].
Philip-Alliez, C. ;
Fievet, L. ;
Serratrice, N. ;
Seiler, M. ;
Le Gall, M. ;
Charavet, C. ;
Catherine, J. H. .
JOURNAL OF MAXILLOFACIAL & ORAL SURGERY, 2024, 23 (02) :342-352
[26]   Reliability of the Kindelan scoring system for alveolar bone grafting with and without a pre-graft occlusal radiograph in patients with cleft lip and palate [J].
Dobbyn, L. M. ;
Gillgrass, T. J. ;
Devlin, M. F. .
BRITISH JOURNAL OF ORAL & MAXILLOFACIAL SURGERY, 2012, 50 (07) :617-620
[27]   Canine eruption in patients with complete cleft lip and palate [J].
Russell, Kathleen A. ;
McLeod, Catherine E. .
CLEFT PALATE-CRANIOFACIAL JOURNAL, 2008, 45 (01) :73-80
[28]   Timing of Alveolar Bone Grafting Determines Different Outcomes in Patients With Unilateral Cleft Palate [J].
Trindade-Suedam, Ivy Kiemle ;
da Silva Filho, Omar Gabriel ;
Carvalho, Roberta Martinelli ;
de Souza Faco, Renato Andre ;
Calvo, Adriana Maria ;
Ozawa, Terumi Okada ;
Trindade, Alceu Sergio, Jr. ;
Kiemle Trindade, Inge Elly .
JOURNAL OF CRANIOFACIAL SURGERY, 2012, 23 (05) :1283-1286
[29]   Validation of a 3D methodology for the evaluation and follow-up of secondary alveolar bone grafting in unilateral cleft lip and palate patients [J].
Shaheen, Eman ;
Danneels, Margaux ;
Doucet, Kaat ;
Dormaar, Titiaan ;
Verdonck, Anna ;
Cadenas de Llano-Perula, Maria ;
Willems, Guy ;
Politis, Constantinus ;
Jacobs, Reinhilde .
ORTHODONTICS & CRANIOFACIAL RESEARCH, 2022, 25 (03) :377-383
[30]   Postoperative Radiologic Imaging in Secondary Alveolar Bone Grafting for Cleft Lip and Palate: A Systematic Review and Meta-Analysis [J].
Groff, Connor K. ;
Obinero, Chioma G. ;
Cepeda Jr, Alfredo ;
Barrera, Jose E. ;
Sobol, Danielle L. ;
Nguyen, Phuong D. ;
Greives, Matthew R. .
JOURNAL OF CRANIOFACIAL SURGERY, 2024, 35 (03) :783-786