Effect of molecular configuration of additives on perovskite crystallization and hot carriers behavior in perovskite solar cells

被引:29
作者
Zhuang, Rongshan [1 ]
Wang, Linqin [2 ]
Qiu, Junming [3 ]
Xie, Lin [1 ]
Miao, Xiaohe [4 ]
Zhang, Xiaoliang [3 ]
Hua, Yong [1 ]
机构
[1] Yunnan Univ, Int Joint Res Ctr Optoelect & Energy Mat, Sch Mat & Energy, Yunnan Key Lab Micro Nano Mat & Technol, Kunming 650091, Yunnan, Peoples R China
[2] Westlake Univ, Ctr Artificial Photosynth Solar Fuels, Sch Sci, Hangzhou 310024, Zhejiang, Peoples R China
[3] Beihang Univ, Sch Mat Sci & Engn, Beijing 100191, Peoples R China
[4] Westlake Univ, Instrumentat & Serv Ctr Phys Sci, Hangzhou 310024, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Perovskite solar cell; Hot carrier; Additive; Perovskite crystallization; Molecular configuration; HYBRID PEROVSKITES; HALIDE PEROVSKITES; TRAP STATES; PASSIVATION; EFFICIENCY; DYNAMICS;
D O I
10.1016/j.cej.2023.142449
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The development of additive materials is of great significance for achieving high performance perovskite solar cells (PSCs). Current studies on additive agents mainly focus on the development of new structures, while the effect of molecular configuration on perovskite crystallization and hot carriers behavior in device is rare to investigate, which will need to take into consideration when we start designing new additives for PSCs appli-cation. In this work, two similar functional molecules, tris[4-(2-thienyl)phenyl]amine (TTPA) and tri(2-thienyl) benzene (TTPB), are applied as additives in perovskite crystallization process. Due to a large steric hindrance, the molecular configuration of TTPA shows very distorted molecular configuration, while TTPB is much more planar. We found that TTPB can effectively reorient perovskite crystallization with the desired facet orientation in comparison to TTPA, which is propitious to reduce the trap density of perovskite films and increase perovskite surface potential. As a result, power conversion efficiency (PCE) is significantly improved from 21.08% for TTPA to 23.67% for TTPB. More importantly, detailed transient absorption characterization reveals that additive TTPB with relative to TTPA is favorable for slowing down hot-carrier cooling process, and thus accelerating the extraction of hot carriers by carrier extraction layers as well as suppressing charge-carrier recombination in device. The findings of the present work can provide some new and important insights for designing high-performance additives for photovoltaic devices and in-depth understanding the hot-carrier dynamics in device.
引用
收藏
页数:9
相关论文
共 56 条
[1]   Supramolecular Halogen Bond Passivation of Organic-Inorganic Halide Perovskite Solar Cells [J].
Abate, Antonio ;
Saliba, Michael ;
Hollman, Derek J. ;
Stranks, Samuel D. ;
Wojciechowski, Konrad ;
Avolio, Roberto ;
Grancini, Giulia ;
Petrozza, Annamaria ;
Snaith, Henry J. .
NANO LETTERS, 2014, 14 (06) :3247-3254
[2]   Maximizing and stabilizing luminescence from halide perovskites with potassium passivation [J].
Abdi-Jalebi, Mojtaba ;
Andaji-Garmaroudi, Zahra ;
Cacovich, Stefania ;
Stavrakas, Camille ;
Philippe, Bertrand ;
Richter, Johannes M. ;
Alsari, Mejd ;
Booker, Edward P. ;
Hutter, Eline M. ;
Pearson, Andrew J. ;
Lilliu, Samuele ;
Savenije, Tom J. ;
Rensmo, Hakan ;
Divitini, Giorgio ;
Ducati, Caterina ;
Friend, Richard H. ;
Stranks, Samuel D. .
NATURE, 2018, 555 (7697) :497-+
[3]   Multifunctional molecular modulators for perovskite solar cells with over 20% efficiency and high operational stability [J].
Bi, Dongqin ;
Li, Xiong ;
Milic, Jovana, V ;
Kubicki, Dominik J. ;
Pellet, Norman ;
Luo, Jingshan ;
Lagrange, Thomas ;
Mettraux, Pierre ;
Emsley, Lyndon ;
Zakeeruddin, Shaik M. ;
Gratzel, Michael .
NATURE COMMUNICATIONS, 2018, 9
[4]   Defects and doping engineering towards high performance lead-free or lead-less perovskite solar cells [J].
Cao, Wenying ;
Hu, Zhaosheng ;
Lin, Zhenhua ;
Guo, Xing ;
Su, Jie ;
Chang, Jingjing ;
Hao, Yue .
JOURNAL OF ENERGY CHEMISTRY, 2022, 68 :420-438
[5]   Printable CsPbI3Perovskite Solar Cells with PCE of 19% via an Additive Strategy [J].
Chang, Xiaoming ;
Fang, Junjie ;
Fan, Yuanyuan ;
Luo, Tao ;
Su, Hang ;
Zhang, Yalan ;
Lu, Jing ;
Tsetseris, Leonidas ;
Anthopoulos, Thomas D. ;
Liu, Shengzhong ;
Zhao, Kui .
ADVANCED MATERIALS, 2020, 32 (40)
[6]   Multifunctional Chemical Linker Imidazoleacetic Acid Hydrochloride for 21% Efficient and Stable Planar Perovskite Solar Cells [J].
Chen, Jiangzhao ;
Zhao, Xing ;
Kim, Seul-Gi ;
Park, Nam-Gyu .
ADVANCED MATERIALS, 2019, 31 (39)
[7]   A Facile Surface Passivation Enables Thermally Stable and Efficient Planar Perovskite Solar Cells Using a Novel IDTT-Based Small Molecule Additive [J].
Choi, Hyuntae ;
Liu, Xiaoyuan ;
Kim, Hong Il ;
Kim, Dohyun ;
Park, Taiho ;
Song, Seulki .
ADVANCED ENERGY MATERIALS, 2021, 11 (16)
[8]   Composition-Dependent Hot Carrier Relaxation Dynamics in Cesium Lead Halide (CsPbX3, X = Br and I) Perovskite Nanocrystals [J].
Chung, Heejae ;
Jung, Seok Il ;
Kim, Hyo Jin ;
Cha, Wonhee ;
Sim, Eunji ;
Kim, Dongho ;
Koh, Weon-Kyu ;
Kim, Jiwon .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (15) :4160-4164
[9]   Why are Hot Holes Easier to Extract than Hot Electrons from Methylammonium Lead Iodide Perovskite? [J].
Dursun, Ibrahim ;
Maity, Partha ;
Yin, Jun ;
Turedi, Bekir ;
Zhumekenov, Ayan A. ;
Lee, Kwang Jae ;
Mohammed, Omar F. ;
Bakr, Osman M. .
ADVANCED ENERGY MATERIALS, 2019, 9 (22)
[10]   Hot carrier cooling mechanisms in halide perovskites [J].
Fu, Jianhui ;
Xu, Qiang ;
Han, Guifang ;
Wu, Bo ;
Huan, Cheng Hon Alfred ;
Leek, Meng Lee ;
Sum, Tze Chien .
NATURE COMMUNICATIONS, 2017, 8