We propose two model selection criteria relying on the bootstrap approach, denoted by QAICb1 and QAICb2, in the framework of linear mixed models. Similar to the justification of Akaike Information Criterion (AIC), the proposed QAICb1 and QAICb2 are proved as asymptotically unbiased estimators of the Kullback-Leibler discrepancy between a candidate model and the true model. However, they are defined on the quasi-likelihood function instead of the likelihood and are proven to be asymptotically equivalent. The proposed selection criteria are constructed by the quasi-likelihood of a candidate model and a bias estimation term in which the bootstrap method is adopted to improve the estimation for the bias caused by using the candidate model to estimate the true model. The simulations across a variety of mixed model settings are conducted to demonstrate that the proposed selection criteria outperform some other existing model selection criteria in selecting the true model. Generalized estimating equations (GEE) are utilized to calculate QAICb1 and QAICb2 in the simulations. The effectiveness of the proposed selection criteria is also demonstrated in an application of Parkinson's Progression Markers Initiative (PPMI) data.
机构:
Univ Maryland, Div Biostat & Bioinformat, Sch Med, Baltimore, MD 21201 USAUniv Maryland, Div Biostat & Bioinformat, Sch Med, Baltimore, MD 21201 USA
Chen, Chixiang
Wang, Ming
论文数: 0引用数: 0
h-index: 0
机构:
Penn State Coll Med, Dept Publ Hlth Sci, Div Biostat & Bioinformat, Hershey, PA 17033 USAUniv Maryland, Div Biostat & Bioinformat, Sch Med, Baltimore, MD 21201 USA
Wang, Ming
Wu, Rongling
论文数: 0引用数: 0
h-index: 0
机构:
Penn State Coll Med, Dept Publ Hlth Sci, Div Biostat & Bioinformat, Hershey, PA 17033 USAUniv Maryland, Div Biostat & Bioinformat, Sch Med, Baltimore, MD 21201 USA
Wu, Rongling
Li, Runze
论文数: 0引用数: 0
h-index: 0
机构:
Penn State Univ, Dept Stat & Methodol Ctr, University Pk, PA 16802 USAUniv Maryland, Div Biostat & Bioinformat, Sch Med, Baltimore, MD 21201 USA
机构:
Univ Maryland, Div Biostat & Bioinformat, Sch Med, College Pk, MD USAUniv Maryland, Div Biostat & Bioinformat, Sch Med, College Pk, MD USA
Chen, Chixiang
Shen, Biyi
论文数: 0引用数: 0
h-index: 0
机构:
Regeneron Pharmaceut, Tarrytown, NY USAUniv Maryland, Div Biostat & Bioinformat, Sch Med, College Pk, MD USA
Shen, Biyi
Wang, Ming
论文数: 0引用数: 0
h-index: 0
机构:
Case Western Reserve Univ, Dept Populat & Quantitat Hlth Sci, Cleveland, OH USAUniv Maryland, Div Biostat & Bioinformat, Sch Med, College Pk, MD USA
机构:
Fujian Normal Univ, Coll Math & Informat, Fuzhou 350117, Fujian, Peoples R China
Yango Univ, Dept Basic Teaching & Res, Fuzhou 350015, Fujian, Peoples R ChinaFujian Normal Univ, Coll Math & Informat, Fuzhou 350117, Fujian, Peoples R China
Liu, Xuan
Chen, Jianbao
论文数: 0引用数: 0
h-index: 0
机构:
Fujian Normal Univ, Coll Math & Informat, Fuzhou 350117, Fujian, Peoples R ChinaFujian Normal Univ, Coll Math & Informat, Fuzhou 350117, Fujian, Peoples R China
Chen, Jianbao
Cheng, Suli
论文数: 0引用数: 0
h-index: 0
机构:
Fujian Normal Univ, Coll Math & Informat, Fuzhou 350117, Fujian, Peoples R ChinaFujian Normal Univ, Coll Math & Informat, Fuzhou 350117, Fujian, Peoples R China
机构:
Univ Tsukuba, Fac Human Sci, Div Psychol, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058572, JapanUniv Tsukuba, Fac Human Sci, Div Psychol, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058572, Japan
Usami, Satoshi
JOURNAL JAPANESE SOCIETY OF COMPUTATIONAL STATISTICS,
2014,
27
(01):
: 17
-
48
机构:
Univ Appl Sci Dresden, Fac Spatial Informat, Friedrich List Pl 1, D-01069 Dresden, GermanyUniv Appl Sci Dresden, Fac Spatial Informat, Friedrich List Pl 1, D-01069 Dresden, Germany
Lehmann, Ruediger
Loesler, Michael
论文数: 0引用数: 0
h-index: 0
机构:
Frankfurt Univ Appl Sci, Fac Architecture Civil Engn & Geomat, Lab Ind Metrol, Nibelungenpl 1, D-60318 Frankfurt, GermanyUniv Appl Sci Dresden, Fac Spatial Informat, Friedrich List Pl 1, D-01069 Dresden, Germany