Improving management of febrile neutropenia in oncology patients: the role of artificial intelligence and machine learning

被引:5
作者
Gallardo-Pizarro, Antonio [1 ]
Peyrony, Olivier [1 ]
Chumbita, Mariana [1 ]
Monzo-Gallo, Patricia [1 ]
Aiello, Tommaso Francesco [1 ]
Teijon-Lumbreras, Christian [1 ]
Gras, Emmanuelle [1 ]
Mensa, Josep [1 ]
Soriano, Alex [1 ]
Garcia-Vidal, Carolina [1 ,2 ]
机构
[1] Univ Barcelona, Hosp Clin Barcelona, IDIBAPS, Barcelona, Spain
[2] Univ Barcelona, Hosp Clin Barcelona, IDIBAPS, C Villarroel 170, Barcelona 08036, Spain
关键词
Febrile neutropenia; artificial intelligence; machine learning; supervised learning; personalized medicine; clinical decision-making; bloodstream infections; multidrug-resistant bacteria; CANCER-RISK INDEX; MULTINATIONAL ASSOCIATION; SUPPORTIVE CARE; BIG DATA; PREDICTION; COMPLICATIONS; VALIDATION; MEDICINE; SYSTEM;
D O I
10.1080/14787210.2024.2322445
中图分类号
R51 [传染病];
学科分类号
100401 ;
摘要
IntroductionArtificial intelligence (AI) and machine learning (ML) have the potential to revolutionize the management of febrile neutropenia (FN) and drive progress toward personalized medicine.Areas coveredIn this review, we detail how the collection of a large number of high-quality data can be used to conduct precise mathematical studies with ML and AI. We explain the foundations of these techniques, covering the fundamentals of supervised and unsupervised learning, as well as the most important challenges, e.g. data quality, 'black box' model interpretation and overfitting. To conclude, we provide detailed examples of how AI and ML have been used to enhance predictions of chemotherapy-induced FN, detection of bloodstream infections (BSIs) and multidrug-resistant (MDR) bacteria, and anticipation of severe complications and mortality.Expert opinionThere is promising potential of implementing accurate AI and ML models whilst managing FN. However, their integration as viable clinical tools poses challenges, including technical and implementation barriers. Improving global accessibility, fostering interdisciplinary collaboration, and addressing ethical and security considerations are essential. By overcoming these challenges, we could transform personalized care for patients with FN.
引用
收藏
页码:179 / 187
页数:9
相关论文
共 55 条
[1]   A prediction model for bacteremia and transfer to intensive care in pediatric and adolescent cancer patients with febrile neutropenia [J].
Alali, Muayad ;
Mayampurath, Anoop ;
Dai, Yangyang ;
Bartlett, Allison H. .
SCIENTIFIC REPORTS, 2022, 12 (01)
[2]  
Alqaissi EY., 2022, Computational and Mathematical Methods in Medicine, V2022, P1
[3]   A Comprehensive Review on Machine Learning in Healthcare Industry: Classification, Restrictions, Opportunities and Challenges [J].
An, Qi ;
Rahman, Saifur ;
Zhou, Jingwen ;
Kang, James Jin .
SENSORS, 2023, 23 (09)
[4]   MACHINE LEARNING METHODS FOR PRECISION MEDICINE RESEARCH DESIGNED TO REDUCE HEALTH DISPARITIES: A STRUCTURED TUTORIAL [J].
Basu, Sanjay ;
Faghmous, James H. ;
Doupe, Patrick .
ETHNICITY & DISEASE, 2020, 30 :217-228
[5]   Prediction of Serious Complications in Patients With Seemingly Stable Febrile Neutropenia: Validation of the Clinical Index of Stable Febrile Neutropenia in a Prospective Cohort of Patients From the FINITE Study [J].
Carmona-Bayonas, Alberto ;
Jimenez-Fonseca, Paula ;
Virizuela Echaburu, Juan ;
Antonio, Maite ;
Font, Carme ;
Biosca, Merce ;
Ramchandani, Avinash ;
Martinez, Jeronimo ;
Hernando Cubero, Jorge ;
Espinosa, Javier ;
Martinez de Castro, Eva ;
Ghanem, Ismael ;
Beato, Carmen ;
Blasco, Ana ;
Garrido, Marcelo ;
Bonilla, Yaiza ;
Mondejar, Rebeca ;
Arcusa Lanza, Maria Angeles ;
Aragon Manrique, Isabel ;
Manzano, Aranzazu ;
Sevillano, Elena ;
Castanon, Eduardo ;
Cardona, Merce ;
Gallardo Martin, Elena ;
Perez Armillas, Quionia ;
Sanchez Lasheras, Fernando ;
Ayala de la Pena, Francisco .
JOURNAL OF CLINICAL ONCOLOGY, 2015, 33 (05) :465-U124
[6]  
Castelvecchi D, 2016, NATURE, V537, P20, DOI [10.1038/538020a, 10.1038/538020a]
[7]   Machine learning improves the prediction of febrile neutropenia in Korean inpatients undergoing chemotherapy for breast cancer [J].
Cho, Bum-Joo ;
Kim, Kyoung Min ;
Bilegsaikhan, Sanchir-Erdene ;
Suh, Yong Joon .
SCIENTIFIC REPORTS, 2020, 10 (01)
[8]  
Chumbita M, 2022, ANTIMICROB AGENTS CH, V66, DOI [10.1128/aac.01744-21, 10.1128/AAC.01744-21]
[9]   Can Artificial Intelligence Improve the Management of Pneumonia [J].
Chumbita, Mariana ;
Cilloniz, Catia ;
Puerta-Alcalde, Pedro ;
Moreno-Garcia, Estela ;
Sanjuan, Gemma ;
Garcia-Pouton, Nicole ;
Soriano, Alex ;
Torres, Antoni ;
Garcia-Vidal, Carolina .
JOURNAL OF CLINICAL MEDICINE, 2020, 9 (01)
[10]   Big data analytics for personalized medicine [J].
Cirillo, Davide ;
Valencia, Alfonso .
CURRENT OPINION IN BIOTECHNOLOGY, 2019, 58 :161-167