Explosion of continuous-state branching processes with competition in a Levy environment

被引:0
作者
Ma, Rugang [1 ,2 ]
Zhou, Xiaowen [2 ]
机构
[1] Cent Univ Finance & Econ, Sch Stat & Math, Beijing, Peoples R China
[2] Concordia Univ, Dept Math & Stat, Montreal, PQ, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Continuous-state branching processes; competition; random environment; explosion; CONTINUOUS-TIME; EXTINCTION;
D O I
10.1017/jpr.2023.32
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We find sufficient conditions on explosion/non-explosion for continuous-state branching processes with competition in a Levy random environment. In particular, we identify the necessary and sufficient conditions on explosion/non-explosion when the competition function is a power function and the Levy measure of the associated branching mechanism is stable.
引用
收藏
页码:68 / 81
页数:14
相关论文
共 27 条
[1]   Branching processes with interaction and a generalized Ray-Knight Theorem [J].
Ba, Mamadou ;
Pardoux, Etienne .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2015, 51 (04) :1290-1313
[2]   Extinction rate of continuous state branching processes in critical Levy environments [J].
Bansaye, Vincent ;
Carlos Pardo, Juan ;
Smadi, Charline .
ESAIM-PROBABILITY AND STATISTICS, 2021, 25 :346-375
[3]   Scaling limits of population and evolution processes in random environment [J].
Bansaye, Vincent ;
Caballero, Maria-Emilia ;
Meleard, Sylvie .
ELECTRONIC JOURNAL OF PROBABILITY, 2019, 24
[4]   On the extinction of continuous state branching processes with catastrophes [J].
Bansaye, Vincent ;
Pardo Millan, Juan Carlos ;
Smadi, Charline .
ELECTRONIC JOURNAL OF PROBABILITY, 2013, 18 :1-31
[5]   Ray-Knight representation of flows of branching processes with competition by pruning of Levy trees [J].
Berestycki, J. ;
Fittipaldi, M. C. ;
Fontbona, J. .
PROBABILITY THEORY AND RELATED FIELDS, 2018, 172 (3-4) :725-788
[6]  
Böinghoff C, 2012, MARKOV PROCESS RELAT, V18, P269
[7]  
Chen M., 1986, ACTA MATH SINICA, V2, P121
[8]  
Chen M.F., 1986, JUMP PROCESSES INTER
[9]  
Chen M.-F., 2004, From Markov Chains to Non-Equilibrium Particle Systems, V2nd
[10]   Continuous-state branching processes with competition: duality and reflection at infinity [J].
Foucart, Clement .
ELECTRONIC JOURNAL OF PROBABILITY, 2019, 24