LEMON: Alternative Sampling for More Faithful Explanation Through Local Surrogate Models

被引:3
作者
Collaris, Dennis [1 ]
Gajane, Pratik [1 ]
Jorritsma, Joost [1 ]
van Wijk, Jarke J. [1 ]
Pechenizkiy, Mykola [1 ]
机构
[1] Eindhoven Univ Technol, Eindhoven, Netherlands
来源
ADVANCES IN INTELLIGENT DATA ANALYSIS XXI, IDA 2023 | 2023年 / 13876卷
基金
荷兰研究理事会;
关键词
Machine learning; Explainable AI; XAI;
D O I
10.1007/978-3-031-30047-9_7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Local surrogate learning is a popular and successful method for machine learning explanation. It uses synthetic transfer data to approximate a complex reference model. The sampling technique used for this transfer data has a significant impact on the provided explanation, but remains relatively unexplored in literature. In this work, we explore alternative sampling techniques in pursuit of more faithful and robust explanations, and present LEMON: a sampling technique that samples directly from the desired distribution instead of reweighting samples as done in other explanation techniques (e.g., LIME). Next, we evaluate our technique in a synthetic and UCI dataset-based experiment, and show that our sampling technique yields more faithful explanations compared to current state-of-the-art explainers.
引用
收藏
页码:77 / 90
页数:14
相关论文
共 24 条
[1]  
Abdollahi B, 2018, HUM-COMPUT INT-SPRIN, P21, DOI 10.1007/978-3-319-90403-0_2
[2]  
Alvarez-Melis D.Jaakkola., 2018, On the robustness of interpretability methods
[3]  
Ba LJ, 2014, ADV NEUR IN, V27
[4]  
Baehrens D, 2010, J MACH LEARN RES, V11, P1803
[5]   Big Data's Disparate Impact [J].
Barocas, Solon ;
Selbst, Andrew D. .
CALIFORNIA LAW REVIEW, 2016, 104 (03) :671-732
[6]  
Bastani O, 2019, Arxiv, DOI arXiv:1705.08504
[7]  
Bucilu C., 2006, P ACM SIGKDD INT C K
[8]  
Buolamwini J., 2018, C FAIRNESS ACCOUNTAB, P77
[9]  
Citron DK, 2014, WASH LAW REV, V89, P1
[10]  
Craven MW, 1996, ADV NEUR IN, V8, P24