Maps preserving trace of products of matrices

被引:3
作者
Huang, Huajun [1 ]
Tsai, Ming-Cheng [2 ]
机构
[1] Auburn Univ, Dept Math & Stat, Auburn, AL 36849 USA
[2] Taipei Univ Technol, Gen Educ Ctr, Taipei, Taiwan
关键词
Trace of products; spectrum; preserver; linear operators; matrix space; AUTOMORPHISMS; ALGEBRAS;
D O I
10.1080/03081087.2022.2129556
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the linearity and injectivity of two maps phi(1) and phi(2) on certain subsets of M-n (C) that satisfy tr(phi(1)(A)phi(2)(B)) = tr(AB) for all A and B in the domain. We apply it to characterize maps phi(i) : S -> S (i = 1, ..., m) satisfying tr(phi(1) (A(1)) . . . phi(m)(A(m))) = tr(A(1). . .A(m)) in which S is the set of n-by-n general, Hermitian, or symmetric matrices for m >= 3, or positive definite or diagonal matrices for m >= 2. The real versions are presented. The results also characterize maps on these sets S that preserve the multiplicative spectrum.
引用
收藏
页码:2962 / 2985
页数:24
相关论文
共 18 条
[1]   Multiplicatively spectrum preserving maps on rectangular matrices [J].
Abdelali, Zine El Abidine ;
Aharmim, Bouchra .
LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (16) :3099-3111
[2]   Maps between Banach algebras preserving the spectrum [J].
Bourhim, A. ;
Mashreghi, J. ;
Stepanyan, A. .
ARCHIV DER MATHEMATIK, 2016, 107 (06) :609-621
[3]   Multiplicatively local spectrum-preserving maps [J].
Bourhim, Abdellatif ;
Lee, Ji Eun .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 549 :291-308
[4]   LINEAR PRESERVERS ON POWERS OF MATRICES [J].
CHAN, GH ;
LIM, MH .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1992, 162 :615-626
[5]   Mappings preserving spectra of products of matrices [J].
Chan, Jor-Ting ;
Li, Chi-Kwong ;
Sze, Nung-Sing .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (04) :977-986
[6]  
Horn R.A., 1985, Matrix Analysis, DOI DOI 10.1017/CBO9781139020411
[7]   Trace and determinant preserving maps of matrices [J].
Huang, Huajun. ;
Liu, Chih-Neng ;
Szokol, Patricia ;
Tsai, Ming-Cheng ;
Zhang, Jun .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 507 :373-388
[8]   A GENERALIZED SCHWARZ INEQUALITY AND ALGEBRAIC INVARIANTS FOR OPERATOR ALGEBRAS [J].
KADISON, RV .
ANNALS OF MATHEMATICS, 1952, 56 (03) :494-503
[9]   Transition probabilities of normal states determine the Jordan structure of a quantum system [J].
Leung, Chi-Wai ;
Ng, Chi-Keung ;
Wong, Ngai-Ching .
JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (01)
[10]   PRESERVERS OF MATRIX PAIRS WITH A FIXED INNER PRODUCT VALUE [J].
Li, Chi-Kwong ;
Plevnik, Lucijan ;
Semrl, Peter .
OPERATORS AND MATRICES, 2012, 6 (03) :433-464