Analysis of dominant and intense XRD peak of (111) plane of ZnS nanocrystals for microstructural study through single line Voigt method: Calculated low dislocation density value emphasizes larger stacking of (111) plane

被引:16
作者
Basak, Sanghita [1 ]
Nath, Debojyoti [1 ]
Das, Ratan [1 ]
机构
[1] Tripura Univ, Dept Phys, Nanosci & Nanotechnol Res Lab, Suryamaninagar 799022, India
关键词
ZnS nanoparticle; HR-TEM; XRD analysis; Voigt function; Dislocation density; PARTICLE-SIZE DISTRIBUTION; X-RAY-DIFFRACTION; BAND-GAP; II-VI; NANOPARTICLES; SEMICONDUCTORS; COMPOUND;
D O I
10.1016/j.molstruc.2023.136273
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, a wet chemical synthesis method has been used for the preparation of ZnS nanocrystals using the precursor Zn(NO3)2 (Zinc Nitrate) and Na2S (Sodium sulfide), where 3-Mercaptopropionic acid has been used as a capping agent. Morphological characterization of the prepared ZnS nanocrystals has been performed through HR-TEM and FE-SEM analysis and the average particle size has been obtained as approximately 26 nm. The HRTEM image also suggests the formation of smooth crystalline ZnS nanoparticles with dominance of the (111) plane. The XRD pattern firmly indicates dominance of (111) crystalline planes over the other planes. For this, different microstructural properties of prepared ZnS nanoparticles have been studied considering only the dominant (111) diffraction peak using single line Voigt method. Finally, the average particle size calculated from morphological analysis has been compared with the crystallite size calculated by XRD analysis through the Single line Voigt method. Calculated dislocation density value indicates presence of less defects states in the sample and confirms the growth of ZnS nanoparticles in a particular direction of (111) plane with pure crystalline nature.
引用
收藏
页数:8
相关论文
共 44 条
[1]   Recent developments in II-VI and III-VI semiconductors and their applications in solar cells [J].
Afzaal, M ;
O'Brien, P .
JOURNAL OF MATERIALS CHEMISTRY, 2006, 16 (17) :1597-1602
[2]  
Akbari B., 2011, IRANIAN J MAT SCI EN, V8, P48, DOI DOI 10.1007/978-3-030-39246-8_17
[3]  
Allen Terence, 2013, PARTICLE SIZE MEASUR, P128
[4]   Band gap engineering and enhanced photoluminescence of Mg doped ZnO nanoparticles synthesized by wet chemical route [J].
Arshad, Mohd ;
Ansari, Mohd Meenhaz ;
Ahmed, Arham S. ;
Tripathi, Pushpendra ;
Ashraf, S. S. Z. ;
Naqvi, A. H. ;
Azam, Ameer .
JOURNAL OF LUMINESCENCE, 2015, 161 :275-280
[5]   Size-strain line-broadening analysis of the ceria round-robin sample [J].
Balzar, D ;
Audebrand, N ;
Daymond, MR ;
Fitch, A ;
Hewat, A ;
Langford, JI ;
Le Bail, A ;
Louër, D ;
Masson, O ;
McCowan, CN ;
Popa, NC ;
Stephens, PW ;
Toby, BH .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2004, 37 :911-924
[6]   Distribution functions of magnetic nanoparticles determined by a numerical inversion method [J].
Bender, P. ;
Balceris, C. ;
Ludwig, F. ;
Posth, O. ;
Bogart, L. K. ;
Szczerba, W. ;
Castro, A. ;
Nilsson, L. ;
Costo, R. ;
Gavilan, H. ;
Gonzalez-Alonso, D. ;
de Pedro, I. ;
Fernandez Barquin, L. ;
Johansson, C. .
NEW JOURNAL OF PHYSICS, 2017, 19
[7]   Effects of different complexing agents on the physical properties of ZnO nanoparticles [J].
Bezerra, J. B. ;
Matos, R. S. ;
Zucolotto, B. ;
Pedra, P. P. ;
Ferreira, N. S. .
MATERIALS SCIENCE AND TECHNOLOGY, 2019, 35 (02) :231-239
[8]   On the incorporation of trivalent rare earth ions in II-VI semiconductor nanocrystals [J].
Bol, AA ;
van Beek, R ;
Meijerink, A .
CHEMISTRY OF MATERIALS, 2002, 14 (03) :1121-1126
[9]   Strain and Grain Size Determination of CeO2 and TiO2 Nanoparticles: Comparing Integral Breadth Methods versus Rietveld, μ-Raman, and TEM [J].
Canchanya-Huaman, Yamerson ;
Mayta-Armas, Angie F. ;
Pomalaya-Velasco, Jemina ;
Bendezu-Roca, Yessica ;
Guerra, Jorge Andres ;
Ramos-Guivar, Juan A. .
NANOMATERIALS, 2021, 11 (09)
[10]   Measuring particle size distribution and mass concentration of nanoplastics and microplastics: addressing some analytical challenges in the sub-micron size range [J].
Caputo, F. ;
Vogel, R. ;
Savage, J. ;
Vella, G. ;
Law, A. ;
Della Camera, G. ;
Hannon, G. ;
Peacock, B. ;
Mehn, D. ;
Ponti, J. ;
Geiss, O. ;
Aubert, D. ;
Prina-Mello, A. ;
Calzolai, L. .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2021, 588 :401-417