Universal Renaissance Strategy of Metal Fluoride in Secondary Ion Batteries Enabled by Liquid Metal Gallium

被引:4
作者
Yang, Jinghao [1 ,2 ]
Zhou, Wei [1 ]
Hu, Jiaming [3 ]
Jiang, Ruohan [1 ]
Sun, Guangai [2 ]
Zhao, Jie [1 ]
Wang, Fei [1 ]
Fang, Fang [4 ]
Song, Yun [1 ]
Sun, Dalin [1 ]
机构
[1] Fudan Univ, Dept Mat Sci, Shanghai 200433, Peoples R China
[2] China Acad Engn Phys, Inst Nucl Phys & Chem, Key Lab Neutron Phys, Mianyang 621999, Peoples R China
[3] Westlake Univ, Sch Engn, Key Lab Micro Nano Fabricat & Characterizat Zhejia, Hangzhou 310024, Peoples R China
[4] Yiwu Res Inst Fudan Univ, Yiwu City 322000, Zhejiang, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
all-solid-state batteries; anodes; cathodes; metal fluorides; liquid metal gallium; LITHIUM STORAGE; IRON FLUORIDE; CONVERSION; TRANSPORT; SURFACE; ANODE;
D O I
10.1002/adma.202301442
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
All-solid-state alkali ion batteries represent a future trend in battery technology, as well as provide an opportunity for low-cost metal fluoride electrode materials, if certain intrinsic problems can be resolved. In this work, a liquid metal activation strategy is proposed in which liquid Ga elements are generated in situ and doped into the LiF crystal structure by introducing a small amount of GaF3. Benefiting from these two Ga states of existence, in which the liquid metal Ga can continuously maintain conformable ion/electron-transport networks, while doped Ga in the LiF crystal structure catalyzes Li-F splitting, the lithium-ion storage capacity of MnF2 significantly increases by 87%. A similar effect can be obtained in FeF3, where the sodium-ion storage capacity is enhanced by 33%. This universal strategy with few restrictions can be used to realize a complete renaissance of metal fluorides, as well as offer an opportunity for the new application of liquid metals in the field of energy storage.
引用
收藏
页数:9
相关论文
共 44 条
[1]   A SIMPLE MEASURE OF ELECTRON LOCALIZATION IN ATOMIC AND MOLECULAR-SYSTEMS [J].
BECKE, AD ;
EDGECOMBE, KE .
JOURNAL OF CHEMICAL PHYSICS, 1990, 92 (09) :5397-5403
[2]   Leveraging valuable synergies by combining alloying and conversion for lithium-ion anodes [J].
Bresser, Dominic ;
Passerini, Stefano ;
Scrosati, Bruno .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (11) :3348-3367
[3]   Construction of solid-liquid fluorine transport channel to enable highly reversible conversion cathodes [J].
Chen, Keyi ;
Lei, Meng ;
Yao, Zhenguo ;
Zheng, Yongjian ;
Hu, Jiulin ;
Lai, Chuanzhong ;
Li, Chilin .
SCIENCE ADVANCES, 2021, 7 (45)
[4]   Superior Destabilization Effects of MnF2 over MnCl2 in the Decomposition of LiBH4 [J].
Fang, Fang ;
Li, Yongtao ;
Song, Yun ;
Sun, Dalin ;
Zhang, Qingan ;
Ouyang, Liuzhang ;
Zhu, Min .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (27) :13528-13533
[5]   Lithium-Iron Fluoride Battery with In Situ Surface Protection [J].
Gu, Wentian ;
Borodin, Oleg ;
Zdyrko, Bogdan ;
Lin, Huan-Ting ;
Kim, Hyea ;
Nitta, Naoki ;
Huang, Jiaxin ;
Magasinski, Alexandre ;
Milicev, Zoran ;
Berdichevsky, Gene ;
Yushin, Gleb .
ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (10) :1507-1516
[6]   Room-temperature liquid metal and alloy systems for energy storage applications [J].
Guo, Xuelin ;
Zhang, Leyuan ;
Ding, Yu ;
Goodenough, John B. ;
Yu, Guihua .
ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (09) :2605-2619
[7]   Mechanistic understanding of the charge storage processes in FeF2 aggregates assembled with cylindrical nanoparticles as a cathode material for lithium-ion batteries by in situ magnetometry [J].
Hu, Zhengqiang ;
Zhang, Fengling ;
Liang, Huanyu ;
Zhang, Hao ;
Wang, Huaizhi ;
Wang, Tiansheng ;
Liu, Renbin ;
Liu, Jie ;
Li, Yadong ;
Dong, Xiaotong ;
Bao, Lianyu ;
Liang, Zhuan ;
Wang, Yaqun ;
Yan, Shishen ;
Li, Qiang ;
Li, Hongsen .
CARBON ENERGY, 2022, 4 (06) :1011-1020
[8]   New Insights into the Electrochemistry Superiority of Liquid Na-K Alloy in Metal Batteries [J].
Huang, Man ;
Xi, Baojuan ;
Feng, Zhenyu ;
Wu, Fangfang ;
Wei, Denghu ;
Liu, Jing ;
Feng, Jinkui ;
Qian, Yitai ;
Xiong, Shenglin .
SMALL, 2019, 15 (12)
[9]   Cycle stability of conversion-type iron fluoride lithium battery cathode at elevated temperatures in polymer electrolyte composites [J].
Huang, Qiao ;
Turcheniuk, Kostiantyn ;
Ren, Xiaolei ;
Magasinski, Alexandre ;
Song, Ah-Young ;
Xiao, Yiran ;
Kim, Doyoub ;
Yushin, Gleb .
NATURE MATERIALS, 2019, 18 (12) :1343-+
[10]   Progress and challenges of prelithiation technology for lithium-ion battery [J].
Huang, Zhenyu ;
Deng, Zhe ;
Zhong, Yun ;
Xu, Mingkang ;
Li, Sida ;
Liu, Xueting ;
Zhou, Yu ;
Huang, Kai ;
Shen, Yue ;
Huang, Yunhui .
CARBON ENERGY, 2022, 4 (06) :1107-1132