Brauer groups and Picard groups of the moduli of parabolic vector bundles on a nodal curve

被引:0
作者
Bhosle, Usha N. [1 ]
机构
[1] Indian Stat Inst, Stat & Math Unit, Bangalore, India
来源
BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY | 2024年 / 65卷 / 03期
关键词
Parabolic bundle; Stable moduli space; Nodal curve; Brauer group; Picard group; TORSION-FREE SHEAVES; SPACES;
D O I
10.1007/s13366-023-00718-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We determine the Brauer groups and Picard groups of the moduli space U-L,U-par's par of stable parabolic vector bundles of rank r with determinant L on a complex nodal curve Y of arithmetic genus g >= 2. We also compute the Picard group of the moduli stack for parabolic SL(r)-bundles on Y and use it to give another description of the Picard group of U-L,U-par's. For g >= 2, we determine the Brauer group of the moduli space U-L's of stable vector bundles on Y of rank r with determinant L, deduce that U-L's is simply connected and show the non-existence of the universal bundle on U-L's x Y in the non-coprime case.
引用
收藏
页码:751 / 774
页数:24
相关论文
共 18 条
[11]   UBER KOMPAKTE HOMOGENE KAHLERSCHE MANNIGFALTIGKEITEN [J].
BOREL, A ;
REMMERT, R .
MATHEMATISCHE ANNALEN, 1962, 145 (05) :429-439
[12]  
GABBER O., 1981, Lecture Notes in Math., V844, P129, DOI 10.1007/BFb0090480
[13]   UNIVERSAL FAMILIES OF EXTENSIONS [J].
LANGE, H .
JOURNAL OF ALGEBRA, 1983, 83 (01) :101-112
[14]  
Milne J.S., 1980, Princeton Mathematical Series, V33
[15]   FACTORIZATION OF GENERALIZED THETA-FUNCTIONS .1. [J].
NARASIMHAN, MS ;
RAMADAS, TR .
INVENTIONES MATHEMATICAE, 1993, 114 (03) :565-623
[16]  
Newstead P.E., 1975, TIFR LECT NOTES
[17]  
Sun XT, 2000, J ALGEBRAIC GEOM, V9, P459
[18]   Geometric invariant theory and flips [J].
Thaddeus, M .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 9 (03) :691-723