Machine learning as new approach for predicting of maxillary sinus volume, a sexual dimorphic study

被引:3
作者
Hamd, Zuhal Y. [1 ]
Aljuaid, Hanan [2 ]
Alorainy, Amal., I [1 ]
Osman, Eyas G. [3 ]
Abuzaid, Mohamed [4 ]
Elshami, Wiam [4 ]
Elhussein, Nagwan [5 ]
Gareeballah, Awadia [6 ,11 ]
Pathan, Refat Khan [7 ]
Naseer, K. A. [8 ]
Khandaker, Mayeen Uddin [9 ,10 ]
Ahmed, Wegdan [12 ]
机构
[1] Princess Nourah Bint Abdulrahman Univ, Coll Hlth & Rehabil Sci, Radiol Sci Dept, POB 84428, Riyadh 11671, Saudi Arabia
[2] Princess Nourah Bint Abdulrahman Univ PNU, Coll Comp & Informat Sci, Comp Sci Dept, POB 84428, Riyadh 11671, Saudi Arabia
[3] Shaqra Univ, Appl Coll, Shaqra 11961, Saudi Arabia
[4] Univ Sharjah, Coll Hlth Sci, Med Diagnost Imaging, Sharjah, U Arab Emirates
[5] Univ Hail, Coll Appl Med Sci, Dept Diagnost Radiol, Hail, Saudi Arabia
[6] Taibah Univ, Fac Appl Med Sci, Dept Diagnost Radiol Technol, Al Madinah Al Munawara, Saudi Arabia
[7] Sunway Univ, Sch Engn & Technol, Dept Comp & Informat Syst, Bandar Sunway 47500, Selangor, Malaysia
[8] Farook Coll Autonomous, Dept Phys, Kozhikode 673632, India
[9] Sun Way Univ, Ctr Appl Phys & Radiat Technol, Sch Engn & Technol, Bandar 47500, Selangor, Malaysia
[10] Daffodil Int Univ, Fac Sci & Informat Technol, Dept Gen Educ Dev, DIU Rd, Dhaka 1341, Bangladesh
[11] Alzaiem Alazhari Univ, Fac Radiol Sci & Med Imaging, Khartoum, Sudan
[12] Natl Univ, Coll Med, Dept Anat, Khartoum, Sudan
关键词
Sexual dimorphism; Maxillary sinus; Linear regression modelling; Machine learning; COMPUTED-TOMOGRAPHY; GENDER;
D O I
10.1016/j.jrras.2023.100570
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The maxillary sinus is the most prominent in humans. Maxillary Sinus Volume (MSV) has grown in popularity as a tool to predict the success of various dental procedures and oral surgeries and determine a person's gender in cases such as forensic investigations when only partial skulls are available. Because it is an irregularly shaped cavity that may be difficult to measure manually, robust imaging techniques such as cone-beam computed to-mography (CBCT) used in conjunction with machine learning (ML) algorithms may offer quick and vigorous ways to make accurate predictions using sinus data. In this retrospective study, we used data from 150 patients with normal maxillary sinuses to train and evaluate a Python ML algorithm for its ability to predict MSV from basic patient demographics (age, gender) and sinus length measurements in three directions (anteroposterior, mediolateral, and superoinferior). The model found sinus length measurements had significantly higher pre-dictive values than either age or gender and could predict MSVs from these length measurements with almost linear accuracy indicated by R-squared values ranging from 0.97 to 0.98% for the right and left sinuses.
引用
收藏
页数:7
相关论文
共 27 条
[1]   Best practice in forensic entomology - standards and guidelines [J].
Amendt, Jens ;
Campobasso, Carlo P. ;
Gaudry, Emmanuel ;
Reiter, Christian ;
LeBlanc, Helene N. ;
Hall, Martin J. R. .
INTERNATIONAL JOURNAL OF LEGAL MEDICINE, 2007, 121 (02) :90-104
[2]  
Balaji S.M., 2018, TXB ORAL MAXILLOFACI
[3]  
Bangi BB, 2017, INT J DENT, V2017, DOI 10.1155/2017/9017078
[4]   Three-dimensional evaluation of maxillary sinus volume in different age and sex groups using CBCT [J].
Belgin, Ceren Aktuna ;
Colak, Mehmet ;
Adiguzel, Ozkan ;
Akkus, Zeki ;
Orhan, Kaan .
EUROPEAN ARCHIVES OF OTO-RHINO-LARYNGOLOGY, 2019, 276 (05) :1493-1499
[5]   A Preliminary 3D Computed Tomography Study of the Human Maxillary Sinus and Nasal Cavity [J].
Butaric, Lauren N. ;
McCarthy, Robert C. ;
Broadfield, Douglas C. .
AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, 2010, 143 (03) :426-436
[6]   The forensic entomologist in the context of the forensic pathologist's role [J].
Campobasso, CP ;
Introna, F .
FORENSIC SCIENCE INTERNATIONAL, 2001, 120 (1-2) :132-139
[7]  
Carrillo AP, 2019, Alegatos, V16, P29, DOI [10.1111/j.1740-9713.2019.01252.x, 10.1111/j.1740-9713.2019.01252.x, DOI 10.1111/J.1740-9713.2019.01252.X]
[8]   Machine learning in orthodontics: Introducing a 3D auto-segmentation and auto-landmark finder of CBCT images to assess maxillary constriction in unilateral impacted canine patients [J].
Chen, Si ;
Wang, Li ;
Li, Gang ;
Wu, Tai-Hsien ;
Diachina, Shannon ;
Tejera, Beatriz ;
Kwon, Jane Jungeun ;
Lin, Feng-Chang ;
Lee, Yan-Ting ;
Xu, Tianmin ;
Shen, Dinggang ;
Ko, Ching-Chang .
ANGLE ORTHODONTIST, 2020, 90 (01) :77-84
[9]   Machine Learning and Deep Learning in Medical Imaging: Intelligent Imaging [J].
Currie, Geoff ;
Hawk, K. Elizabeth ;
Rohren, Eric ;
Vial, Alanna ;
Klein, Ran .
JOURNAL OF MEDICAL IMAGING AND RADIATION SCIENCES, 2019, 50 (04) :477-487
[10]   Cone-beam computerized tomography (CBCT) imaging of the oral and maxillofacial region: A systematic review of the literature [J].
De Vos, W. ;
Casselman, J. ;
Swennen, G. R. J. .
INTERNATIONAL JOURNAL OF ORAL AND MAXILLOFACIAL SURGERY, 2009, 38 (06) :609-625