Polite Teacher: Semi-Supervised Instance Segmentation With Mutual Learning and Pseudo-Label Thresholding

被引:3
作者
Filipiak, Dominik [1 ,2 ,3 ,4 ]
Zapala, Andrzej [3 ]
Tempczyk, Piotr [1 ,5 ,6 ]
Fensel, Anna [2 ,7 ]
Cygan, Marek [3 ]
机构
[1] AI Clearing Inc, Austin, TX 78752 USA
[2] Univ Innsbruck, Dept Comp Sci, A-6020 Innsbruck, Austria
[3] Univ Warsaw, Inst Informat, PL-00927 Warsaw, Poland
[4] Perelyn, PL-00388 Warsaw, Poland
[5] NASK Natl Res Inst, PL-01045 Warsaw, Poland
[6] PL4AI Polish Lab AI, PL-00707 Warsaw, Poland
[7] Wageningen Univ & Res, Artificial Intelligence Chair, NL-6708 PB Wageningen, Netherlands
关键词
Instance segmentation; Detectors; Task analysis; Semantic segmentation; Computer architecture; Training; Feature extraction; Semisupervised learning; Education; Electronic learning; Semi-supervised instance segmentation; anchor-free detection; instance segmentation; semi-supervised learning;
D O I
10.1109/ACCESS.2024.3374073
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present Polite Teacher, a simple yet effective method for the task of semi-supervised instance segmentation. The proposed architecture relies on the Teacher-Student mutual learning framework. To filter out noisy pseudo-labels, we use confidence thresholding for bounding boxes and mask scoring for masks. The approach has been tested with CenterMask, a single-stage anchor-free detector. Tested on the COCO 2017 val dataset, our architecture significantly (approx. +8 pp. in mask AP) outperforms the baseline at different supervision regimes. To the best of our knowledge, this is one of the first works tackling the problem of semi-supervised instance segmentation and the first one devoted to an anchor-free detector. The code is available: github.com/AI-Clearing/PoliteTeacher.
引用
收藏
页码:37744 / 37756
页数:13
相关论文
共 33 条
[1]  
Berrada T., 2024, P IEEE CVF WINT C AP, P475
[2]   Cascade R-CNN: Delving into High Quality Object Detection [J].
Cai, Zhaowei ;
Vasconcelos, Nuno .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :6154-6162
[3]   End-to-End Object Detection with Transformers [J].
Carion, Nicolas ;
Massa, Francisco ;
Synnaeve, Gabriel ;
Usunier, Nicolas ;
Kirillov, Alexander ;
Zagoruyko, Sergey .
COMPUTER VISION - ECCV 2020, PT I, 2020, 12346 :213-229
[4]   Emerging Properties in Self-Supervised Vision Transformers [J].
Caron, Mathilde ;
Touvron, Hugo ;
Misra, Ishan ;
Jegou, Herve ;
Mairal, Julien ;
Bojanowski, Piotr ;
Joulin, Armand .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :9630-9640
[5]   Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision [J].
Chen, Xiaokang ;
Yuan, Yuhui ;
Zeng, Gang ;
Wang, Jingdong .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :2613-2622
[6]   Masked-attention Mask Transformer for Universal Image Segmentation [J].
Cheng, Bowen ;
Misra, Ishan ;
Schwing, Alexander G. ;
Kirillov, Alexander ;
Girdhar, Rohit .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, :1280-1289
[7]  
Dosovitskiy A., 2021, P INT C LEARN REPR, V14
[8]   EVA: Exploring the Limits of Masked Visual Representation Learning at Scale [J].
Fang, Yuxin ;
Wang, Wen ;
Xie, Binhui ;
Sun, Quan ;
Wu, Ledell ;
Wang, Xinggang ;
Huang, Tiejun ;
Wang, Xinlong ;
Cao, Yue .
2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, :19358-19369
[9]  
Goodfellow IJ, 2014, ADV NEUR IN, V27, P2672
[10]  
He KM, 2020, IEEE T PATTERN ANAL, V42, P386, DOI [10.1109/TPAMI.2018.2844175, 10.1109/ICCV.2017.322]