COMPLETE NONCOMPACT SUBMANIFOLDS OF MANIFOLDS WITH NEGATIVE CURVATURE

被引:0
作者
Gao, Ya [1 ]
Gao, Yanling [1 ]
Mao, Jing [1 ]
Xie, Zhiqi [2 ]
机构
[1] Hubei Univ, Fac Math & Stat, Key Lab Appl Math Hubei Prov, Wuhan 430062, Peoples R China
[2] Yulin Univ, Sch Math & Stat, Yulin 719000, Peoples R China
关键词
L-p harmonic 1-forms; submanifolds; ends; sectional curvature; k-th Ricci curvature; BOUNDED MEAN-CURVATURE; MINIMAL HYPERSURFACES; HARMONIC-MAPPINGS; EIGENVALUE; THEOREMS; INEQUALITIES; GEOMETRY; SOBOLEV;
D O I
10.4134/JKMS.j230283
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, for an m-dimensional (m >= 5) complete noncompact submanifold M immersed in an n-dimensional (n >= 6) simply connected Riemannian manifold N with negative sectional curvature, under suitable constraints on the squared norm of the second fundamental form of M, the norm of its weighted mean curvature vector | H-f | and the weighted real-valued function f, we can obtain: center dot several one -end theorems for M; center dot two Liouville theorems for harmonic maps from M to complete Riemannian manifolds with nonpositive sectional curvature.
引用
收藏
页码:183 / 205
页数:23
相关论文
共 45 条
[1]  
ANDERSON MT, 1988, LECT NOTES MATH, V1339, P1
[2]  
[Anonymous], 1982, Ann. Math. Stud.
[3]  
[Anonymous], 1996, Bol. Soc. Brasil. Mat. (N.S.)
[4]  
[Anonymous], 1993, Geometry and global analysis
[5]   Eigenvalue estimates for submanifolds with locally bounded mean curvature [J].
Bessa, GP ;
Montenegro, JF .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2003, 24 (03) :279-290
[6]  
Cao HD, 1997, MATH RES LETT, V4, P637
[7]   A gap theorem for self-shrinkers of the mean curvature flow in arbitrary codimension [J].
Cao, Huai-Dong ;
Li, Haizhong .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2013, 46 (3-4) :879-889
[8]  
Carron G., 2002, P CTR MATH APPL AUST, V40, P49
[9]  
Chavel Isaac, 1984, EIGENVALUES RIEMANNI, V115
[10]   2-Dimensional complete self-shrinkers in R3 [J].
Cheng, Qing-Ming ;
Ogata, Shiho .
MATHEMATISCHE ZEITSCHRIFT, 2016, 284 (1-2) :537-542