Evaluating county-level lung cancer incidence from environmental radiation exposure, PM2.5, and other exposures with regression and machine learning models

被引:0
作者
Lee, Heechan [1 ,2 ,3 ]
Hanson, Heidi A. [3 ]
Logan, Jeremy [4 ]
Maguire, Dakotah [3 ]
Kapadia, Anuj [3 ]
Dewji, Shaheen [1 ,2 ]
Agasthya, Greeshma [3 ]
机构
[1] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Nucl & Radiol Engn Program, 770 State St, Atlanta, GA 30332 USA
[2] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Med Phys Program, 770 State St, Atlanta, GA 30332 USA
[3] Oak Ridge Natl Lab, Adv Comp Hlth Sci Sect, 1 Bethel Valley Rd, Oak Ridge, TN 37830 USA
[4] Oak Ridge Natl Lab, Data & AI Sect, Data Engn Grp, 1 Bethel Valley Rd, Oak Ridge, TN 37830 USA
关键词
Ionizing radiation; Lung cancer; Radon; Exposome; PM2.5; NO-THRESHOLD-THEORY; RADON EXPOSURE; INDOOR RADON; RESIDENTIAL RADON; URANIUM MINERS; AIR-POLLUTION; RISK; EPIDEMIOLOGY; PREDICTION; MORTALITY;
D O I
10.1007/s10653-023-01820-4
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Characterizing the interplay between exposures shaping the human exposome is vital for uncovering the etiology of complex diseases. For example, cancer risk is modified by a range of multifactorial external environmental exposures. Environmental, socioeconomic, and lifestyle factors all shape lung cancer risk. However, epidemiological studies of radon aimed at identifying populations at high risk for lung cancer often fail to consider multiple exposures simultaneously. For example, moderating factors, such as PM2.5, may affect the transport of radon progeny to lung tissue. This ecological analysis leveraged a population-level dataset from the National Cancer Institute's Surveillance, Epidemiology, and End-Results data (2013-17) to simultaneously investigate the effect of multiple sources of low-dose radiation (gross gamma activity and indoor radon) and PM2.5 on lung cancer incidence rates in the USA. County-level factors (environmental, sociodemographic, lifestyle) were controlled for, and Poisson regression and random forest models were used to assess the association between radon exposure and lung and bronchus cancer incidence rates. Tree-based machine learning (ML) method perform better than traditional regression: Poisson regression: 6.29/7.13 (mean absolute percentage error, MAPE), 12.70/12.77 (root mean square error, RMSE); Poisson random forest regression: 1.22/1.16 (MAPE), 8.01/8.15 (RMSE). The effect of PM2.5 increased with the concentration of environmental radon, thereby confirming findings from previous studies that investigated the possible synergistic effect of radon and PM2.5 on health outcomes. In summary, the results demonstrated (1) a need to consider multiple environmental exposures when assessing radon exposure's association with lung cancer risk, thereby highlighting (1) the importance of an exposomics framework and (2) that employing ML models may capture the complex interplay between environmental exposures and health, as in the case of indoor radon exposure and lung cancer incidence. [GRAPHICS]
引用
收藏
页数:18
相关论文
共 74 条
[31]   Thyroid disease associated with exposure to the Nevada Nuclear Weapons Test Site radiation - A reevaluation based on corrected dosimetry and examination data [J].
Lyon, Joseph L. ;
Alder, Stephen C. ;
Stone, Mary Bishop ;
Scholl, Alan ;
Reading, James C. ;
Holubkov, Richard ;
Sheng, Xiaoming ;
White, George L., Jr. ;
Hegmann, Kurt T. ;
Anspaugh, Lynn ;
Hoffman, F. Owen ;
Simon, Steven L. ;
Thomas, Brian ;
Carroll, Raymond ;
Meikle, A. Wayne .
EPIDEMIOLOGY, 2006, 17 (06) :604-614
[32]   Sources of indoor PM2.5 gross α and β activities measured in 340 homes [J].
Matthaios, Vasileios N. ;
Liu, Man ;
Li, Longxiang ;
Kang, Choong-Min ;
Vieira, Carolina L. Z. ;
Gold, Diane R. ;
Koutrakis, Petros .
ENVIRONMENTAL RESEARCH, 2021, 197
[33]  
MCDONALD JW, 1995, CANCER EPIDEM BIOMAR, V4, P791
[34]  
MIFUNE M, 1992, JPN J CANCER RES, V83, P1
[35]   Residential Radon Exposure, Histologic Types, and Lung Cancer Risk. A Case-Control Study in Galicia, Spain [J].
Miguel Barros-Dios, Juan ;
Ruano-Ravina, Alberto ;
Perez-Rios, Monica ;
Castro-Bernardez, Margarita ;
Abal-Arca, Jose ;
Tojo-Castro, Marta .
CANCER EPIDEMIOLOGY BIOMARKERS & PREVENTION, 2012, 21 (06) :951-958
[36]  
Moritz S, 2017, R J, V9, P207
[37]   Radiation-related genomic profile of papillary thyroid carcinoma after the Chernobyl accident [J].
Morton, Lindsay M. ;
Karyadi, Danielle M. ;
Stewart, Chip ;
Bogdanova, Tetiana, I ;
Dawson, Eric T. ;
Steinberg, Mia K. ;
Dai, Jieqiong ;
Hartley, Stephen W. ;
Schonfeld, Sara J. ;
Sampson, Joshua N. ;
Maruvka, Yosef E. ;
Kapoor, Vidushi ;
Ramsden, Dale A. ;
Carvajal-Garcia, Juan ;
Perou, Charles M. ;
Parker, Joel S. ;
Krznaric, Marko ;
Yeager, Meredith ;
Boland, Joseph F. ;
Hutchinson, Amy ;
Hicks, Belynda D. ;
Dagnall, Casey L. ;
Gastier-Foster, Julie M. ;
Bowen, Jay ;
Lee, Olivia ;
Machiela, Mitchell J. ;
Cahoon, Elizabeth K. ;
Brenner, Alina, V ;
Mabuchi, Kiyohiko ;
Drozdovitch, Vladimir ;
Masiuk, Sergii ;
Chepurny, Mykola ;
Zurnadzhy, Liudmyla Yu ;
Hatch, Maureen ;
de Gonzalez, Amy Berrington ;
Thomas, Gerry A. ;
Tronko, Mykola D. ;
Getz, Gad ;
Chanock, Stephen J. .
SCIENCE, 2021, 372 (6543) :705-+
[38]   Prediction of indoor radon based on soil radon and soil permeability [J].
Mose, DG ;
Mushrush, GW .
JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH PART A-TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING, 1999, 34 (06) :1253-1266
[39]  
National Cancer Institute DCCPS Surveillance Research Program, 2022, SEER*Stat database: Incidence-SEER research data, 8 registries, Nov 2021 Sub (1975-2019)-linked to county attributes-time dependent (1990-2019) income/rurality, 1969-2020 counties
[40]   Epidemiological studies of atomic bomb radiation at the Radiation Effects Research Foundation [J].
Ozasa, Kotaro ;
Cullings, Harry M. ;
Ohishi, Waka ;
Hida, Ayumi ;
Grant, Eric J. .
INTERNATIONAL JOURNAL OF RADIATION BIOLOGY, 2019, 95 (07) :879-891