Geometric and dosimetric analysis of CT- and MR-based automatic contouring for the EPTN contouring atlas in neuro-oncology

被引:2
作者
Vaassen, Femke [1 ,3 ]
Zegers, Catharina M. L. [1 ]
Hofstede, David [1 ]
Wubbels, Mart [1 ]
Beurskens, Hilde [1 ]
Verheesen, Lindsey [1 ]
Canters, Richard [1 ]
Looney, Padraig [2 ]
Battye, Michael [2 ]
Gooding, Mark J. [2 ]
Compter, Inge [1 ]
Eekers, Danielle B. P. [1 ]
van Elmpt, Wouter [1 ]
机构
[1] Maastricht Univ, Med Ctr, GROW Sch Oncol & Reprod, Dept Radiat Oncol Maastro, Maastricht, Netherlands
[2] Mirada Med Ltd, Oxford, England
[3] Postbox 3035, NL-6202 NA Maastricht, Netherlands
来源
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS | 2023年 / 114卷
关键词
Radiotherapy; Neuro-oncology; Automatic contouring; Deep-learning contouring; RADIATION-THERAPY; RISK; SEGMENTATION; ORGAN; HEAD; DELINEATION; PREDICTION; SOFTWARE;
D O I
10.1016/j.ejmp.2023.103156
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: Atlas-based and deep-learning contouring (DLC) are methods for automatic segmentation of organs-at-risk (OARs). The European Particle Therapy Network (EPTN) published a consensus-based atlas for delineation of OARs in neuro-oncology. In this study, geometric and dosimetric evaluation of automatically-segmented neuro-oncological OARs was performed using CT-and MR-models following the EPTN-contouring atlas.Methods: Image and contouring data from 76 neuro-oncological patients were included. Two atlas-based models (CT-atlas and MR-atlas) and one DLC-model (MR-DLC) were created. Manual contours on registered CT-MR-images were used as ground-truth. Results were analyzed in terms of geometrical (volumetric Dice similarity coefficient (vDSC), surface DSC (sDSC), added path length (APL), and mean slice-wise Hausdorff distance (MSHD)) and dosimetrical accuracy. Distance-to-tumor analysis was performed to analyze to which extent the location of the OAR relative to planning target volume (PTV) has dosimetric impact, using Wilcoxon rank-sum tests.Results: CT-atlas outperformed MR-atlas for 22/26 OARs. MR-DLC outperformed MR-atlas for all OARs. Highest median (95 %CI) vDSC and sDSC were found for the brainstem in MR-DLC: 0.92 (0.88-0.95) and 0.84 (0.77-0.89) respectively, as well as lowest MSHD: 0.27 (0.22-0.39)cm. Median dose differences (Delta D) were within +/- 1 Gy for 24/26(92 %) OARs for all three models. Distance-to-tumor showed a significant correlation for Delta D-max,D-0.03cc-parameters when splitting the data in <= 4 cm and > 4 cm OAR-distance (p < 0.001).Conclusion: MR-based DLC and CT-based atlas-contouring enable high-quality segmentation. It was shown that a combination of both CT-and MR-autocontouring models results in the best quality.
引用
收藏
页数:11
相关论文
共 44 条
[1]   Geometric evaluations of CT and MRI based deep learning segmentation for brain OARs in radiotherapy [J].
Alzahrani, Nouf ;
Henry, Ann ;
Clark, Anna ;
Murray, Louise ;
Nix, Michael ;
Al-Qaisieh, Bashar .
PHYSICS IN MEDICINE AND BIOLOGY, 2023, 68 (17)
[2]   A review of atlas-based segmentation for magnetic resonance brain images [J].
Cabezas, Mariano ;
Oliver, Arnau ;
Llado, Xavier ;
Freixenet, Jordi ;
Cuadra, Meritxell Bach .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2011, 104 (03) :E158-E177
[3]   Deep Learning Algorithm for Auto-Delineation of High-Risk Oropharyngeal Clinical Target Volumes With Built-In Dice Similarity Coefficient Parameter Optimization Function [J].
Cardenas, Carlos E. ;
McCarroll, Rachel E. ;
Court, Laurence E. ;
Elgohari, Baher A. ;
Elhalawani, Hesham ;
Fuller, Clifton D. ;
Kamal, Mona J. ;
Meheissen, Mohamed A. M. ;
Mohamed, Abdallah S. R. ;
Rao, Arvind ;
Williams, Bowman ;
Wong, Andrew ;
Yang, Jinzhong ;
Aristophanous, Michalis .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2018, 101 (02) :468-478
[4]   A recursive ensemble organ segmentation (REOS) framework: application in brain radiotherapy [J].
Chen, Haibin ;
Lu, Weiguo ;
Chen, Mingli ;
Zhou, Linghong ;
Timmerman, Robert ;
Tu, Dan ;
Nedzi, Lucien ;
Wardak, Zabi ;
Jiang, Steve ;
Zhen, Xin ;
Gu, Xuejun .
PHYSICS IN MEDICINE AND BIOLOGY, 2019, 64 (02)
[5]  
Clarke K, 2017, Journal of Nuclear Medicine & Radiation Therapy, V08, DOI [10.4172/2155-9619.1000321, 10.4172/2155-9619.1000321, DOI 10.4172/2155-9619.1000321]
[6]  
Collins GS, 2015, J CLIN EPIDEMIOL, V68, P112, DOI [10.7326/M14-0697, 10.7326/M14-0698, 10.1002/bjs.9736, 10.1016/j.eururo.2014.11.025, 10.1111/eci.12376, 10.1186/s12916-014-0241-z, 10.1016/j.jclinepi.2014.11.010, 10.1136/bmj.g7594, 10.1038/bjc.2014.639]
[7]   Development and evaluation of an automated EPTN-consensus based organ at risk atlas in the brain on MRI [J].
Crouzen, Jeroen A. ;
Petoukhova, Anna L. ;
Wiggenraad, Ruud G. J. ;
Hutschemaekers, Stefan ;
Gadellaa-van-Hooijdonk, Christa G. M. ;
van der Voort van Zyp, Noelle C. M. G. ;
Mast, Mirjam E. ;
Zindler, Jaap D. .
RADIOTHERAPY AND ONCOLOGY, 2022, 173 :262-268
[8]   Validation of a Magnetic Resonance Imaging-based Auto-contouring Software Tool for Gross Tumour Delineation in Head and Neck Cancer Radiotherapy Planning [J].
Doshi, T. ;
Wilson, C. ;
Paterson, C. ;
Lamb, C. ;
James, A. ;
MacKenzie, K. ;
Soraghan, J. ;
Petropoulakis, L. ;
Di Caterina, G. ;
Grose, D. .
CLINICAL ONCOLOGY, 2017, 29 (01) :60-67
[9]   The EPTN consensus-based atlas for CT- and MR-based contouring in neuro-oncology [J].
Eekers, Danielle B. P. ;
in 't Ven, Lieke ;
Roelofs, Erik ;
Postma, Alida ;
Alapetite, Claire ;
Burnet, Neil G. ;
Calugaru, Valentin ;
Compter, Inge ;
Coremans, Ida E. M. ;
Hoyer, Morton ;
Lambrecht, Maarten ;
Nystrom, Petra Witt ;
Romero, Alejandra Mendez ;
Paulsen, Frank ;
Perpar, Ana ;
de Ruysscher, Dirk ;
Renard, Laurette ;
Timmermann, Beate ;
Vitek, Pavel ;
Weber, Damien C. ;
van der Weide, Hiske L. ;
Whitfield, Gillian A. ;
Wiggenraad, Ruud ;
Troost, Esther G. C. .
RADIOTHERAPY AND ONCOLOGY, 2018, 128 (01) :37-43
[10]  
Eekers DB, 2021, CANCERDATA, DOI [10.17195/candat.2021.02.1, DOI 10.17195/CANDAT.2021.02.1]