A redox-active inorganic crown ether based on a polyoxometalate capsule

被引:8
作者
Tamai, Nanako [1 ]
Ogiwara, Naoki [1 ]
Hayashi, Eri [2 ]
Kamata, Keigo [2 ]
Misawa, Toshiyuki [3 ]
Ito, Takeru [3 ]
Kojima, Tatsuhiro [4 ]
Segado, Mireia [5 ]
Petrus, Enric [5 ]
Bo, Carles [5 ,6 ]
Uchida, Sayaka [1 ]
机构
[1] Univ Tokyo, Sch Arts & Sci, Dept Basic Sci, 3-8-1 Komaba, Tokyo, Tokyo 1538902, Japan
[2] Tokyo Inst Technol, Inst Innovat Res, Lab Mat & Struct, Nagatsuta Cho 4259,Midori Ku, Yokohama 2268503, Japan
[3] Tokai Univ, Sch Sci, Dept Chem, 4-1-1 Kitakaname, Hiratsuka 2591292, Japan
[4] Osaka Univ, Grad Sch Sci, Dept Chem, 1-1 Machikaneyamacho, Toyonaka, Osaka 5600043, Japan
[5] Barcelona Inst Sci & Technol BIST, Inst Chem Res Catalonia ICIQ, Ave Paisos Catalans 16, Tarragona 43007, Spain
[6] Univ Rovira & Virgili, Dept Quim Fis & Inorgan, Marcel Li Domingo S-N, Tarragona 43007, Spain
关键词
ELECTRONIC-STRUCTURE; CRYSTAL-STRUCTURE; ION-EXCHANGE; CHEMISTRY; SIZE; TOPOLOGY; CATIONS;
D O I
10.1039/d3sc01077e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Cation-uptake has been long researched as an important topic in materials science. Herein we focus on a molecular crystal composed of a charge-neutral polyoxometalate (POM) capsule [(Mo72Fe30O252)-Fe-VI-O-III(H2O)(102)(CH3CO2)(15)](3+) encapsulating a Keggin-type phosphododecamolybdate anion [alpha-(PMo12O40)-O-VI](3-). Cation-coupled electron-transfer reaction occurs by treating the molecular crystal in an aqueous solution containing CsCl and ascorbic acid as a reducing reagent. Specifically, multiple Cs+ ions and electrons are captured in crown-ether-like pores {(Mo3Fe3O6)-Fe-VI-O-III}, which exist on the surface of the POM capsule, and Mo atoms, respectively. The locations of Cs+ ions and electrons are revealed by single-crystal X-ray diffraction and density functional theory studies. Highly selective Cs+ ion uptake is observed from an aqueous solution containing various alkali metal ions. Cs+ ions can be released from the crown-ether-like pores by the addition of aqueous chlorine as an oxidizing reagent. These results show that the POM capsule functions as an unprecedented "redox-active inorganic crown ether", clearly distinguished from the non-redox-active organic counterpart.
引用
收藏
页码:5453 / 5459
页数:7
相关论文
共 50 条
  • [31] Redox-active inverse crowns for small molecule activation
    Maurer, Johannes
    Klerner, Lukas
    Mai, Jonathan
    Stecher, Hannah
    Thum, Stefan
    Morasch, Michael
    Langer, Jens
    Harder, Sjoerd
    [J]. NATURE CHEMISTRY, 2025, : 703 - 709
  • [32] Redox-active ligand promoted electrophile addition at cobalt
    Zou, Minzhu
    Waldie, Kate M.
    [J]. CHEMICAL COMMUNICATIONS, 2023, 59 (99) : 14693 - 14696
  • [33] Comparative study of SoxR activation by redox-active compounds
    Singh, Atul K.
    Shin, Jung-Ho
    Lee, Kang-Lok
    Imlay, James A.
    Roe, Jung-Hye
    [J]. MOLECULAR MICROBIOLOGY, 2013, 90 (05) : 983 - 996
  • [34] Ferrate(II) complexes with redox-active formazanate ligands
    Milocco, Francesca
    Demeshko, Serhiy
    Meyer, Franc
    Otten, Edwin
    [J]. DALTON TRANSACTIONS, 2018, 47 (26) : 8817 - 8823
  • [35] Redox-active main group/transition metal complexes
    Gabbai, Francois P.
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [36] A quantum chemical approach for the mechanisms of redox-active metalloenzymes
    Siegbahn, Per E. M.
    [J]. RSC ADVANCES, 2021, 11 (06) : 3495 - 3508
  • [37] Diferrocenylmercury-Bridged Diphosphine: A Chiral, Ambiphilic, and Redox-Active Bidentate Ligand
    Kuate, Alain C. Tagne
    Lalancette, Roger A.
    Bannenberg, Thomas
    Jaekle, Frieder
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (22) : 6552 - 6557
  • [38] Coordination polymers derived from alkali metal complexes of redox-active ligands
    Bazyakina, Natalia L.
    Moskalev, Mikhail, V
    Cherkasov, Anton, V
    Makarov, Valentin M.
    Fedushkin, Igor L.
    [J]. CRYSTENGCOMM, 2022, 24 (12) : 2297 - 2304
  • [39] Dinuclear Nickel Complexes in Five States of Oxidation Using a Redox-Active Ligand
    Zhou, You-Yun
    Hartline, Douglas R.
    Steiman, Talia J.
    Fanwick, Phillip E.
    Uyeda, Christopher
    [J]. INORGANIC CHEMISTRY, 2014, 53 (21) : 11770 - 11777
  • [40] Factors affecting redox potential and differential sensitivity of SoxR to redox-active compounds
    Lee, Kang-Lok
    Singh, Atul K.
    Heo, Lim
    Seok, Chaok
    Roe, Jung-Hye
    [J]. MOLECULAR MICROBIOLOGY, 2015, 97 (05) : 808 - 821