Machine-Learning-Assisted Discovery of High-Efficient Oxygen Evolution Electrocatalysts

被引:13
|
作者
Mao, Xinnan [1 ]
Wang, Lu [1 ]
Li, Youyong [1 ,2 ]
机构
[1] Soochow Univ, Inst Funct Nano & Soft Mat FUNSOM, Jiangsu Key Lab Carbon Based Funct Mat & Devices, Suzhou 215123, Jiangsu, Peoples R China
[2] Macau Univ Sci & Technol, Macao Inst Mat Sci & Engn, Taipa 999078, Macau, Peoples R China
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2023年 / 14卷 / 01期
基金
中国国家自然科学基金;
关键词
PLANE-WAVE; DOPED IRO2; WATER; CATALYSTS; PERFORMANCE; OXIDES; ELECTROLYSIS; RUTHENIUM; CORROSION; INSIGHTS;
D O I
10.1021/acs.jpclett.2c02873
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Iridium oxide (IrO2) is the predominant electrocatalyst for the oxygen evolution reaction (OER), but its low efficiency and high cost limit its applications. In this work, we have developed a strategy by combination of high-throughput density functional theory (DFT) and machine learning (ML) techniques for material discovery on IrO2-based electrocatalysts with enhanced OER activity. A total of 36 kinds of metal dopants are considered to substitute for Ir to form binary and ternary metal oxides, and the most stable surface structures are selected from a total of 4648 structures for OER activity evaluation. Utilizing the neural network language model (NNLM), we associate the atomic environment with the formation energies of crystals and free energies of OER intermediates, and finally a series of potential candidates have been screened as the superior OER catalysts. Our strategy could efficiently explore promising electrocatalysts, especially for evaluating complex multi-metallic compounds.
引用
收藏
页码:170 / 177
页数:8
相关论文
共 50 条
  • [1] Machine-learning-assisted discovery of highly efficient high-entropy alloy catalysts for the oxygen reduction reaction
    Wan, Xuhao
    Zhang, Zhaofu
    Yu, Wei
    Niu, Huan
    Wang, Xiting
    Guo, Yuzheng
    PATTERNS, 2022, 3 (09):
  • [2] Machine-learning-assisted discovery of perovskite materials with high dielectric breakdown strength
    Li, Jianbo
    Peng, Yuzhong
    Zhao, Lupeng
    Chen, Guodong
    Zeng, Li
    Wei, Guoqiang
    Xu, Yanhua
    MATERIALS ADVANCES, 2022, 3 (23): : 8639 - 8646
  • [3] Machine-Learning-Assisted Screening of Nanocluster Electrocatalysts: Mapping and Reshaping the Activity Volcano for the Oxygen Reduction Reaction
    Sharma, Rahul Kumar
    Jena, Milan Kumar
    Minhas, Harpriya
    Pathak, Biswarup
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (46) : 63589 - 63601
  • [4] Machine-learning-assisted materials discovery using failed experiments
    Paul Raccuglia
    Katherine C. Elbert
    Philip D. F. Adler
    Casey Falk
    Malia B. Wenny
    Aurelio Mollo
    Matthias Zeller
    Sorelle A. Friedler
    Joshua Schrier
    Alexander J. Norquist
    Nature, 2016, 533 : 73 - 76
  • [5] Machine-learning-assisted low dielectric constant polymer discovery†
    Liang, Jiechun
    Xu, Shangqian
    Hu, Linfeng
    Zhao, Yu
    Zhu, Xi
    MATERIALS CHEMISTRY FRONTIERS, 2021, 5 (10) : 3823 - 3829
  • [6] Machine-learning-assisted materials discovery using failed experiments
    Raccuglia, Paul
    Elbert, Katherine C.
    Adler, Philip D. F.
    Falk, Casey
    Wenny, Malia B.
    Mollo, Aurelio
    Zeller, Matthias
    Friedler, Sorelle A.
    Schrier, Joshua
    Norquist, Alexander J.
    NATURE, 2016, 533 (7601) : 73 - +
  • [7] Machine-learning-assisted modeling
    Greenstreet, Sarah
    PHYSICS TODAY, 2021, 74 (07) : 42 - 47
  • [8] Machine-learning-assisted discovery of polymers with high thermal conductivity using a molecular design algorithm
    Wu, Stephen
    Kondo, Yukiko
    Kakimoto, Masa-aki
    Yang, Bin
    Yamada, Hironao
    Kuwajima, Isao
    Lambard, Guillaume
    Hongo, Kenta
    Xu, Yibin
    Shiomi, Junichiro
    Schick, Christoph
    Morikawa, Junko
    Yoshida, Ryo
    NPJ COMPUTATIONAL MATERIALS, 2019, 5 (1)
  • [9] Machine-Learning-Assisted Materials Discovery from Electronic Band Structure
    Sinha, Prashant
    Joshi, Ablokit
    Dey, Rik
    Misra, Shikhar
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2024, 64 (22) : 8404 - 8413
  • [10] Machine-learning-assisted discovery of polymers with high thermal conductivity using a molecular design algorithm
    Stephen Wu
    Yukiko Kondo
    Masa-aki Kakimoto
    Bin Yang
    Hironao Yamada
    Isao Kuwajima
    Guillaume Lambard
    Kenta Hongo
    Yibin Xu
    Junichiro Shiomi
    Christoph Schick
    Junko Morikawa
    Ryo Yoshida
    npj Computational Materials, 5