A Network Intrusion Security Detection Method Using BiLSTM-CNN in Big Data Environment

被引:0
|
作者
Wang, Hong [1 ]
机构
[1] Sichuan Modern Vocat Coll, Sch Elect & Informat, Chengdu 610207, Peoples R China
来源
JOURNAL OF INFORMATION PROCESSING SYSTEMS | 2023年 / 19卷 / 05期
关键词
Big Data; BiLSTM; CNN; Feature Selection; Network Intrusion Detection; FEATURE-EXTRACTION; DETECTION SYSTEM; INTERNET;
D O I
10.3745/JIPS.01.0097
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The conventional methods of network intrusion detection system (NIDS) cannot measure the trend of intrusion detection targets effectively, which lead to low detection accuracy. In this study, a NIDS method which based on a deep neural network in a big-data environment is proposed. Firstly, the entire framework of the NIDS model is constructed in two stages. Feature reduction and anomaly probability output are used at the core of the two stages. Subsequently, a convolutional neural network, which encompasses a down sampling layer and a characteristic extractor consist of a convolution layer, the correlation of inputs is realized by introducing bidirectional long short-term memory. Finally, after the convolution layer, a pooling layer is added to sample the required features according to different sampling rules, which promotes the overall performance of the NIDS model. The proposed NIDS method and three other methods are compared, and it is broken down under the conditions of the two databases through simulation experiments. The results demonstrate that the proposed model is superior to the other three methods of NIDS in two databases, in terms of precision, accuracy, F1 score, and recall, which are 91.64%, 93.35%, 92.25%, and 91.87%, respectively. The proposed algorithm is significant for improving the accuracy of NIDS.
引用
收藏
页码:688 / 701
页数:14
相关论文
共 50 条
  • [21] Network intrusion detection using data dimensions reduction techniques
    Anita Shiravani
    Mohammad Hadi Sadreddini
    Hassan Nosrati Nahook
    Journal of Big Data, 10
  • [22] Intrusion Detection Using Big Data and Deep Learning Techniques
    Faker, Osama
    Dogdu, Erdogan
    PROCEEDINGS OF THE 2019 ANNUAL ACM SOUTHEAST CONFERENCE (ACMSE 2019), 2019, : 86 - 93
  • [23] Sentiment Classification of Social Network Text Based on AT-BiLSTM Model in a Big Data Environment
    Liu, Jinjun
    INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGIES AND SYSTEMS APPROACH, 2023, 16 (02)
  • [24] Network security based combined CNN-RNN models for IoT intrusion detection system
    Jablaoui, Rahma
    Liouane, Noureddine
    PEER-TO-PEER NETWORKING AND APPLICATIONS, 2025, 18 (03)
  • [25] Intrusion Detection System for Big Data Analytics in IoT Environment
    Anuradha, M.
    Mani, G.
    Shanthi, T.
    Nagarajan, N. R.
    Suresh, P.
    Bharatiraja, C.
    COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2022, 43 (01): : 381 - 396
  • [26] A distributed platform for intrusion detection system using data stream mining in a big data environment
    Schuartz, Fabio Cesar
    Fonseca, Mauro
    Munaretto, Anelise
    ANNALS OF TELECOMMUNICATIONS, 2024, 79 (7-8) : 507 - 521
  • [27] Zero Trust Network Intrusion Detection System (NIDS) using Auto Encoder for Attention-based CNN-BiLSTM
    Alalmaie, Abeer Z.
    Nanda, Priyadarsi
    He, Xiangjian
    PROCEEDINGS OF 2023 AUSTRALIAN COMPUTER SCIENCE WEEK, ACSW 2023, 2023, : 1 - 9
  • [28] A Survey of CNN-Based Network Intrusion Detection
    Mohammadpour, Leila
    Ling, Teck Chaw
    Liew, Chee Sun
    Aryanfar, Alihossein
    APPLIED SCIENCES-BASEL, 2022, 12 (16):
  • [29] Network Intrusion Detection Model Based on CNN and GRU
    Cao, Bo
    Li, Chenghai
    Song, Yafei
    Qin, Yueyi
    Chen, Chen
    APPLIED SCIENCES-BASEL, 2022, 12 (09):
  • [30] Exploration of the Blockchain Oriented Computer Network Security Optimization Method in the Big Data Environment
    Wu, Cong
    Li, Jiaxuan
    Zhao, Xin
    HUMAN-CENTRIC COMPUTING AND INFORMATION SCIENCES, 2024, 14