Boundedness and Unboundedness in Total Variation Regularization

被引:0
作者
Bredies, Kristian [1 ]
Iglesias, Jose A. [2 ]
Mercier, Gwenael [3 ]
机构
[1] Karl Franzens Univ Graz, Inst Math & Sci Comp, Graz, Austria
[2] Univ Twente, Dept Appl Math, Enschede, Netherlands
[3] Univ Vienna, Fac Math, Vienna, Austria
关键词
Total variation; Linear inverse problems; Boundedness of minimimizers; Generalized taut string; Vanishing weights; Infimal convolution regularizers; ALGORITHM; SETS; MINIMIZATION; DENSITY;
D O I
10.1007/s00245-023-10028-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider whether minimizers for total variation regularization of linear inverse problems belong to L-8 even if the measured data does not. We present a simple proof of boundedness of the minimizer for fixed regularization parameter, and derive the existence of uniform bounds for sufficiently small noise under a source condition and adequate a priori parameter choices. To show that such a result cannot be expected for every fidelity term and dimension we compute an explicit radial unbounded minimizer, which is accomplished by proving the equivalence of weighted one-dimensional denoising with a generalized taut string problem. Finally, we discuss the possibility of extending such results to related higher-order regularization functionals, obtaining a positive answer for the infimal convolution of first and second order total variation.
引用
收藏
页数:42
相关论文
共 55 条
[1]   A NOTION OF TOTAL VARIATION DEPENDING ON A METRIC WITH DISCONTINUOUS COEFFICIENTS [J].
AMAR, M ;
BELLETTINI, G .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1994, 11 (01) :91-133
[2]  
Ambrosio L., 2000, OX MATH M, pxviii, DOI 10.1017/S0024609301309281
[3]   Some qualitative properties for the total variation flow [J].
Andreu, F ;
Caselles, V ;
Diaz, JI ;
Mazón, JM .
JOURNAL OF FUNCTIONAL ANALYSIS, 2002, 188 (02) :516-547
[4]   The Dirichlet problem for the total variation flow [J].
Andreu, F ;
Ballester, C ;
Caselles, V ;
Mazón, JM .
JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 180 (02) :347-403
[5]  
Andreu F., 2001, Differential Integral Equations, V14, P321, DOI DOI 10.57262/DIE/1356123331
[6]  
Andreu-Vaillo F., 2004, Progress in Mathematics, V223
[7]  
[Anonymous], 1998, GRUND MATH WISS
[8]  
ANZELLOTTI G, 1983, ANN MAT PUR APPL, V135, P294
[9]  
Athavale P, 2017, J CONVEX ANAL, V24, P1051
[10]  
Baldi A, 2001, HOUSTON J MATH, V27, P683