Spin-Chirality-Driven Quantum Anomalous and Quantum Topological Hall Effects in Chiral Magnets

被引:15
作者
Zhou, Xiaodong [1 ,2 ,3 ]
Feng, Wanxiang [2 ,3 ]
Li, Yinwei [1 ]
Yao, Yugui [2 ,3 ]
机构
[1] Jiangsu Normal Univ, Sch Phys & Elect Engn, Lab Quantum Funct Mat Design & Applicat, Xuzhou 221116, Peoples R China
[2] Beijing Inst Technol, Ctr Quantum Phys, Sch Phys, Key Lab Adv Optoelect Quantum Architecture & Measu, Beijing 100081, Peoples R China
[3] Beijing Inst Technol, Sch Phys, Beijing Key Lab Nanophoton & Ultrafine Optoelect S, Beijing 100081, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
chiral kagome antiferromagnet; spin chirality; quantum anomalous Hall effect; quantum topological Halleffect; INSULATOR; REALIZATION; STATES;
D O I
10.1021/acs.nanolett.3c01332
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The quantum anomalous Hall effect (QAHE) is a highlyresearchedtopic in condensed matter physics due to its ability to enable dissipationlesstransport. Previous studies have mainly focused on the ferromagneticQAHE, which arises from the combination of collinear ferromagnetismand two-dimensional (2D) Z (2) topologicalinsulator phases. In our study, we demonstrate the emergence of thespin-chirality-driven QAHE and the quantum topological Hall effect(QTHE) by sandwiching a 2D Z (2) topologicalinsulator between two chiral kagome antiferromagnetic single-layerssynthesized experimentally. The QAHE is surprisingly realized withfully compensated noncollinear antiferromagnetism in contrast to conventionalcollinear ferromagnetism. The Chern number can be regulated periodicallywith the interplay between vector- and scalar-spin chiralities, andthe QAHE emerges even without spin-orbit coupling, indicatingthe rare QTHE. Our findings open a new avenue for realizing antiferromagneticquantum spintronics based on the unconventional mechanisms from chiralspin textures.
引用
收藏
页码:5680 / 5687
页数:8
相关论文
共 92 条
[1]   Comparing the anomalous Hall effect and the magneto-optical Kerr effect through antiferromagnetic phase transitions in Mn3Sn [J].
Balk, A. L. ;
Sung, N. H. ;
Thomas, S. M. ;
Rosa, P. F. S. ;
McDonald, R. D. ;
Thompson, J. D. ;
Bauer, E. D. ;
Ronning, F. ;
Crooker, S. A. .
APPLIED PHYSICS LETTERS, 2019, 114 (03)
[2]   Antiferromagnetic spintronics [J].
Baltz, V. ;
Manchon, A. ;
Tsoi, M. ;
Moriyama, T. ;
Ono, T. ;
Tserkovnyak, Y. .
REVIEWS OF MODERN PHYSICS, 2018, 90 (01)
[3]   Anomalous Hall effect in noncollinear antiferromagnetic Mn3NiN thin films [J].
Boldrin, David ;
Samathrakis, Ilias ;
Zemen, Jan ;
Mihai, Andrei ;
Zou, Bin ;
Johnson, Freya ;
Esser, Bryan D. ;
McComb, David W. ;
Petrov, Peter K. ;
Zhang, Hongbin ;
Cohen, Lesley F. .
PHYSICAL REVIEW MATERIALS, 2019, 3 (09)
[4]   Topological Hall effect and Berry phase in magnetic nanostructures [J].
Bruno, P ;
Dugaev, VK ;
Taillefumier, M .
PHYSICAL REVIEW LETTERS, 2004, 93 (09) :096806-1
[5]   Microscopic origin of the anomalous Hall effect in noncollinear kagome magnets [J].
Busch, Oliver ;
Goebel, Boerge ;
Mertig, Ingrid .
PHYSICAL REVIEW RESEARCH, 2020, 2 (03)
[6]  
Chang CZ, 2015, NAT MATER, V14, P473, DOI [10.1038/nmat4204, 10.1038/NMAT4204]
[7]   Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator [J].
Chang, Cui-Zu ;
Zhang, Jinsong ;
Feng, Xiao ;
Shen, Jie ;
Zhang, Zuocheng ;
Guo, Minghua ;
Li, Kang ;
Ou, Yunbo ;
Wei, Pang ;
Wang, Li-Li ;
Ji, Zhong-Qing ;
Feng, Yang ;
Ji, Shuaihua ;
Chen, Xi ;
Jia, Jinfeng ;
Dai, Xi ;
Fang, Zhong ;
Zhang, Shou-Cheng ;
He, Ke ;
Wang, Yayu ;
Lu, Li ;
Ma, Xu-Cun ;
Xue, Qi-Kun .
SCIENCE, 2013, 340 (6129) :167-170
[8]  
Checkelsky JG, 2014, NAT PHYS, V10, P731, DOI [10.1038/NPHYS3053, 10.1038/nphys3053]
[9]   Anomalous Hall Effect Arising from Noncollinear Antiferromagnetism [J].
Chen, Hua ;
Niu, Qian ;
MacDonald, A. H. .
PHYSICAL REVIEW LETTERS, 2014, 112 (01)
[10]   Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4 [J].
Deng, Yujun ;
Yu, Yijun ;
Shi, Meng Zhu ;
Guo, Zhongxun ;
Xu, Zihan ;
Wang, Jing ;
Chen, Xian Hui ;
Zhang, Yuanbo .
SCIENCE, 2020, 367 (6480) :895-+