Synergizing multiple machine learning techniques and remote sensing for advanced landslide susceptibility assessment: a case study in the Three Gorges Reservoir Area

被引:5
|
作者
Song, Yingxu [1 ,2 ]
Li, Yuan [1 ]
Zou, Yujia [2 ]
Wang, Run [5 ]
Liang, Ye [2 ]
Xu, Shiluo [3 ]
He, Yueshun [2 ]
Yu, Xianyu [4 ]
Wu, Weicheng [1 ]
机构
[1] East China Univ Technol, Key Lab Digital Land & Resources, Nanchang 330013, Jiangxi, Peoples R China
[2] East China Univ Technol, Sch Informat Engn, Nanchang 330013, Jiangxi, Peoples R China
[3] Huzhou Univ, Sch Informat Engn, Huzhou 313000, Peoples R China
[4] Hubei Univ Technol, Sch Civil Engn Architecture & Environm, Wuhan 430068, Hubei, Peoples R China
[5] Geol Environm Ctr Hubei Prov, Wuhan 430034, Peoples R China
关键词
Slope-unit-based; Landslide susceptibility; Three Gorges Reservoir; Interpretability; HIERARCHY PROCESS AHP; FREQUENCY RATIO; FUZZY-LOGIC; LOGISTIC-REGRESSION; GIS; WEIGHTS; MODELS; PROVINCE; WANZHOU; REGION;
D O I
10.1007/s12665-024-11521-5
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study conducts an in-depth exploration of the efficacy of deep learning and ensemble learning techniques for slope-unit-based landslide susceptibility prediction within the context of the Three Gorges Reservoir area in China, with a specific focus on Wanzhou District. Leveraging a dataset comprising twelve distinct landslide factors and 1909 Slope Units, the research evaluates three deep learning models (Long Short-Term Memory, Recurrent Neural Network, and Gated Recurrent Unit) as well as three ensemble learning models (LightGBM (LGBM), Extra Trees, and Random Forest) using five performance metrics. Central to this endeavor is the adept utilization of remote sensing technology, including Landsat 8 OLI images, Digital Elevation Model (DEM) data, and Google Earth Pro images. The Landsat 8 OLI images offer a panoramic view of the study area, capturing essential landscape features and variations. The DEM data, providing detailed elevation information, empowers the analysis of terrain morphology crucial for landslide susceptibility assessment. The findings conclusively showcase that ensemble learning models harnessed in this study, augmented by the integration of diverse remote sensing data, exhibit exceptional predictive capabilities in accurately anticipating landslide susceptibility. These models outperform their deep learning model counterparts, attributing their success to the multi-faceted insights derived from the synergy between remote sensing imagery and advanced machine learning algorithms. The ensemble models' enhanced performance metrics, such as F1-score, recall, precision, and area under the curve (AUC) values, underscore their potential utility in real-world landslide prediction scenarios. Especially noteworthy among the ensemble models is LGBM, which emerges as the most promising candidate with the highest F1-score (0.561) and Recall (0.524), indicating that the LGBM model possesses a more robust predictive capability for landslide samples. In-depth interpretability analysis using SHapley Additive exPlanations (SHAP) values and Partial Dependence Plots (PDP) assessments delves into the mechanics of LGBM's predictive prowess. This analysis, reliant on remote sensing data, provides clarity into the contributions of various evaluation factors, emphasizing the roles of attributes such as proximity to the river, rainfall, and elevation. The correlation patterns revealed between these factors and landslide susceptibility add layers of understanding, while the intricate interplay of distance to the river unveils the complex interactions between geological and climatic variables.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Landslide susceptibility assessment using statistical and machine learning techniques: A case study in the upper reaches of the Minjiang River, southwestern China
    Ling, Sixiang
    Zhao, Siyuan
    Huang, Junpeng
    Zhang, Xuantu
    FRONTIERS IN EARTH SCIENCE, 2022, 10
  • [32] A Combination of Geographically Weighted Regression, Particle Swarm Optimization and Support Vector Machine for Landslide Susceptibility Mapping: A Case Study at Wanzhou in the Three Gorges Area, China
    Yu, Xianyu
    Wang, Yi
    Niu, Ruiqing
    Hu, Youjian
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2016, 13 (05)
  • [33] Advanced machine-learning approaches for landslide susceptibility map generation using remote sensing data and GIS
    Saxena, Vivek
    Singh, Upasna
    Sinha, L. K.
    CURRENT SCIENCE, 2024, 127 (09): : 1065 - 1075
  • [34] Landslide susceptibility assessment and mapping using state-of-the art machine learning techniques
    Pourghasemi, Hamid Reza
    Sadhasivam, Nitheshnirmal
    Amiri, Mahdis
    Eskandari, Saeedeh
    Santosh, M.
    NATURAL HAZARDS, 2021, 108 (01) : 1291 - 1316
  • [35] The assessment of landslide susceptibility mapping using random forest and decision tree methods in the Three Gorges Reservoir area, China
    Kaixiang Zhang
    Xueling Wu
    Ruiqing Niu
    Ke Yang
    Lingran Zhao
    Environmental Earth Sciences, 2017, 76
  • [36] Landslide susceptibility mapping based on global and local logistic regression models in Three Gorges Reservoir area, China
    Zhang, Miao
    Cao, Xuelian
    Peng, Ling
    Niu, Ruiqing
    ENVIRONMENTAL EARTH SCIENCES, 2016, 75 (11)
  • [37] Integration of LIDAR Data and Geological Maps for Landslide Hazard Assessment in the Three Gorges Reservoir Area, China
    Ye, R. Q.
    Niu, R. Q.
    Zhao, Y. N.
    Jiang, Q. Y.
    Wu, T.
    Deng, Q. L.
    2010 18TH INTERNATIONAL CONFERENCE ON GEOINFORMATICS, 2010,
  • [38] A comparative study of regional landslide susceptibility mapping with multiple machine learning models
    Wang, Yunhao
    Wang, Luqi
    Liu, Songlin
    Liu, Pengfei
    Zhu, Zhengwei
    Zhang, Wengang
    GEOLOGICAL JOURNAL, 2024, 59 (09) : 2383 - 2400
  • [40] An Integrated Approach of Machine Learning, Remote Sensing, and GIS Data for the Landslide Susceptibility Mapping
    Ullah, Israr
    Aslam, Bilal
    Shah, Syed Hassan Iqbal Ahmad
    Tariq, Aqil
    Qin, Shujing
    Majeed, Muhammad
    Havenith, Hans-Balder
    LAND, 2022, 11 (08)