Generalized Approximate Message Passing Based Bayesian Learning Detectors for Uplink Grant-Free NOMA

被引:6
作者
Zhang, Xiaoxu [1 ]
Fan, Pingzhi [1 ]
Hao, Li [1 ]
Quan, Xin [1 ]
机构
[1] Southwest Jiaotong Univ, Chengdu 611756, Peoples R China
关键词
Multiuser detection; Bayes methods; Uplink; Approximation algorithms; Computational complexity; Message passing; NOMA; GF-NOMA; multiuser detection; GAMP-SBL; GAMP-PCSBL; ACCESS;
D O I
10.1109/TVT.2023.3280919
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The existing sparse Bayesian learning (SBL) and pattern coupled sparse Bayesian learning (PCSBL) multiuser detection (MUD) algorithms for grant-free non-orthogonal multiple access (GF-NOMA) have high computational complexity, i.e. O(NK2), considering mainly the calculation of posterior distribution of the transmitted signals. In this paper, we embed generalized approximate message passing (GAMP) to SBL and PCSBL, and develop two efficient Bayesian learning algorithms for GF-NOMA systems, that is, generalized approximate message passing sparse Bayesian learning (GAMP-SBL) and generalized approximate message passing pattern coupled sparse Bayesian learning (GAMP-PCSBL). It is shown that the Bayesian algorithms can significantly reduce the computational complexity fromO(NK2) toO(NK). Simulation results show that these two low complexity detectors still have superior recovery performance than the conventional MUD methods, and nearly have the same performance compared with SBL and PCSBL.
引用
收藏
页码:15057 / 15061
页数:5
相关论文
共 15 条
[1]  
Dai LL, 2015, IEEE COMMUN MAG, V53, P74, DOI 10.1109/MCOM.2015.7263349
[2]   Two-Dimensional Pattern-Coupled Sparse Bayesian Learning via Generalized Approximate Message Passing [J].
Fang, Jun ;
Zhang, Lizao ;
Li, Hongbin .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (06) :2920-2930
[3]   Pattern-Coupled Sparse Bayesian Learning for Recovery of Block-Sparse Signals [J].
Fang, Jun ;
Shen, Yanning ;
Li, Hongbin ;
Wang, Pu .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (02) :360-372
[4]   An Efficient Matching Pursuit Based Compressive Sensing Detector For Uplink Grant-Free NOMA [J].
Li, Shuo ;
Xiao, Lixia ;
Jiang, Tao .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2021, 70 (02) :2012-2017
[5]   Sparse Signal Processing for Grant-Free Massive Connectivity A future paradigm for random access protocols in the Internet of Things [J].
Liu, Liang ;
Larsson, Erik G. ;
Yu, Wei ;
Popovski, Petar ;
Stefanovic, Cedomir ;
de Carvalho, Elisabeth .
IEEE SIGNAL PROCESSING MAGAZINE, 2018, 35 (05) :88-99
[6]   Compressive Sensing-Based Joint Activity and Data Detection for Grant-Free Massive IoT Access [J].
Mei, Yikun ;
Gao, Zhen ;
Wu, Yongpeng ;
Chen, Wei ;
Zhang, Jun ;
Ng, Derrick Wing Kwan ;
Di Renzo, Marco .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (03) :1851-1869
[7]  
Oyerinde O. O., 2020, P IEEE 91 VEH TECHN, P1
[8]  
Renna R. B. D., 2021, P IEEE 17 INT S WIR, P1
[9]  
Schepker H.F., 2013, PROC INT S WIRELESS, P1
[10]  
Schepker HF, 2012, IEEE VTS VEH TECHNOL