Instance-Aware Deep Graph Learning for Multi-Label Classification

被引:5
|
作者
Wang, Yun [1 ,2 ]
Zhang, Tong [1 ,2 ]
Zhou, Chuanwei [1 ,2 ]
Cui, Zhen [1 ,2 ]
Yang, Jian [1 ,2 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, PCA Lab, Key Lab Intelligent Percept & Syst High Dimens Inf, Nanjing 210094, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Jiangsu Key Lab Image & Video Understanding Social, Nanjing 210094, Peoples R China
基金
中国国家自然科学基金;
关键词
Correlation; Adaptation models; Task analysis; Feature extraction; Image recognition; Convolutional neural networks; Sports; Graph convolutional neural network; image-dependent label correlation matrix; regions of interests; variational inference; IMAGE CLASSIFICATION;
D O I
10.1109/TMM.2021.3121559
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Graph convolutional neural network (GCN) has effectively boosted the multi-label image recognition task by modeling correlation among labels. In previous methods, label correlation is computed based on statistical information through label diffusion, and therefore the same for all samples. This, however, makes graph inference on labels insufficient to handle huge variations among numerous image instances. In this paper, we propose an instance-aware graph convolutional neural network (IA_GCN) framework for the multi-label classification. As a whole, two fused branches of sub-networks are involved in the framework: a global branch modeling the whole image and a local branch exploring dependencies among regions of interests (ROIs). For both the branches, an image-dependent label correlation matrix (ID_LCM), fusing both the statistical label correlation matrix (LCM) and an individual one of each image instance, is constructed to inject adaptive information of label-awareness into the learned features of the model through graph convolution. Specifically, the individual LCM of each image is obtained by mining the label dependencies based on the predicted label scores of those detected ROIs. In this process, considering the contribution differences of ROIs to multi-label classification, variational inference is introduced to learn adaptive scaling factors for those ROIs by considering their complex distribution. Finally, extensive experiments on MS-COCO and VOC datasets show that our proposed approach outperforms existing state-of-the-art methods.
引用
收藏
页码:90 / 99
页数:10
相关论文
共 50 条
  • [31] Learning Common and Label-Specific Features for Multi-Label Classification With Missing Labels
    Li, Runxin
    Ouyang, Zexian
    Shang, Zhenhong
    Jia, Lianyin
    Li, Xiaowu
    IEEE ACCESS, 2024, 12 : 81170 - 81195
  • [32] Source Detection With Multi-Label Classification
    Vijayamohanan, Jayakrishnan
    Gupta, Arjun
    Noakoasteen, Oameed
    Goudos, Sotirios K. K.
    Christodoulou, Christos G.
    IEEE OPEN JOURNAL OF SIGNAL PROCESSING, 2023, 4 : 336 - 345
  • [33] Deep Multi-Task Multi-Label CNN for Effective Facial Attribute Classification
    Mao, Longbiao
    Yan, Yan
    Xue, Jing-Hao
    Wang, Hanzi
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2022, 13 (02) : 818 - 828
  • [34] Multi-label learning based deep transfer neural network for facial attribute classification
    Zhuang, Ni
    Yan, Yan
    Chen, Si
    Wang, Hanzi
    Shen, Chunhua
    PATTERN RECOGNITION, 2018, 80 : 225 - 240
  • [35] Multi-label Classification for Sentiment Analysis Using CBGA Hybrid Deep Learning Model
    El-Deen, Doha Taha Nor
    El-Sayed, Rania Salah
    Hussein, Ali Mohamed
    Zaki, Mervat S.
    ENGINEERING LETTERS, 2024, 32 (02) : 340 - 349
  • [36] Representation Learning With Dual Autoencoder for Multi-Label Classification
    Zhu, Yi
    Yang, Yang
    Li, Yun
    Qiang, Jipeng
    Yuan, Yunhao
    Zhang, Runmei
    IEEE ACCESS, 2021, 9 : 98939 - 98947
  • [37] Active learning with label correlation exploration for multi-label image classification
    Wu, Jian
    Ye, Chen
    Sheng, Victor S.
    Zhang, Jing
    Zhao, Pengpeng
    Cui, Zhiming
    IET COMPUTER VISION, 2017, 11 (07) : 577 - 584
  • [38] Multi-Label Human Activity Recognition on Image Using Deep Learning
    Nikolaev, Pavel
    PROCEEDINGS OF THE 7TH SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGIES FOR INTELLIGENT DECISION MAKING SUPPORT (ITIDS 2019), 2019, 166 : 141 - 145
  • [39] Learning Individual Class Representation From Biased Multi-Label Data
    Adiya, Tserendorj
    Lee, Seungkyu
    IEEE ACCESS, 2021, 9 : 99504 - 99512
  • [40] Multi-Label Classification using Deep Convolutional Neural Network
    Lydia, A. Agnes
    Francis, E. Sagayaraj
    2020 INTERNATIONAL CONFERENCE ON INNOVATIVE TRENDS IN INFORMATION TECHNOLOGY (ICITIIT), 2020,