INITIAL L2 x middot middot middot x L2 BOUNDS FOR MULTILINEAR OPERATORS

被引:2
作者
Grafakos, Loukas [1 ]
He, Danqing [2 ]
Honzik, Petr [3 ]
Park, Bae Jun [4 ]
机构
[1] Univ Missouri, Dept Math, Columbia, MO 65211 USA
[2] Fudan Univ, Sch Math Sci, Shanghai, Peoples R China
[3] Charles Univ Prague, Dept Math, Prague 11636 1, Czech Republic
[4] Sungkyunkwan Univ, Dept Math, Suwon 16419, South Korea
基金
国家重点研发计划;
关键词
Multilinear operators; rough singular integral operator; Ho?rmander?s multiplier theorem; HORMANDER MULTIPLIER THEOREM; SINGULAR-INTEGRALS; TRANSFORM;
D O I
10.1090/tran/8877
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Lp boundedness theory of convolution operators is based on an initial L2-+ L2 estimate derived from the Fourier transform. The corresponding theory of multilinear operators lacks such a simple initial estimate in view of the unavailability of Plancherel's identity in this setting, and up to now it has not been clear what a natural initial estimate might be. In this work we obtain initial L2 x center dot center dot center dot x L2-+ L2/m estimates for three types of important multilinear operators: rough singular integrals, multipliers of Ho center dot rmander type, and multipliers whose derivatives satisfy qualitative estimates. These estimates lay the foundation for the derivation of other Lp estimates for such operators.
引用
收藏
页码:3445 / 3472
页数:28
相关论文
共 37 条
[1]  
[Anonymous], 2006, MONOGRAPHS MATH
[2]   The lattice bump multiplier problem [J].
Buriankova, Eva ;
Grafakos, Loukas ;
He, Danqing ;
Honzik, Petr .
STUDIA MATHEMATICA, 2022, 262 (02) :225-240
[3]   ON THE EXISTENCE OF CERTAIN SINGULAR INTEGRALS [J].
CALDERON, AP ;
ZYGMUND, A .
ACTA MATHEMATICA, 1952, 88 (03) :85-139
[4]   PARABOLIC MAXIMAL FUNCTIONS ASSOCIATED WITH A DISTRIBUTION .2. [J].
CALDERON, AP ;
TORCHINSKY, A .
ADVANCES IN MATHEMATICS, 1977, 24 (02) :101-171
[5]  
Coifman R., 1978, ANN I FOURIER, V28, P177
[6]   EXTENSIONS OF HARDY SPACES AND THEIR USE IN ANALYSIS [J].
COIFMAN, RR ;
WEISS, G .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 83 (04) :569-645
[7]   COMMUTATORS OF SINGULAR INTEGRALS AND BILINEAR SINGULAR INTEGRALS [J].
COIFMAN, RR ;
MEYER, Y .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 212 (OCT) :315-331
[8]   A SPARSE DOMINATION PRINCIPLE FOR ROUGH SINGULAR INTEGRALS [J].
Conde-Alonso, Jose M. ;
Culiuc, Amalia ;
Di Plinio, Francesco ;
Ou, Yumeng .
ANALYSIS & PDE, 2017, 10 (05) :1255-1284
[9]   ORTHONORMAL BASES OF COMPACTLY SUPPORTED WAVELETS [J].
DAUBECHIES, I .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (07) :909-996
[10]  
Daubechies I., 1992, CBMS-NSF Regional Conference Series in Applied Mathematics, DOI DOI 10.1137/1.9781611970104