A Novel Machine-learning Model to Classify Schizophrenia Using Methylation Data Based on Gene Expression

被引:0
|
作者
Vijayakumar, Karthikeyan A. [1 ,2 ]
Cho, Gwang-Won [1 ,2 ,3 ]
机构
[1] Chosun Univ, Coll Nat Sci, Dept Biol Sci, 309 Pilmun Daero, Gwangju 501759, South Korea
[2] Chosun Univ, Dept Integrat Biol Sci, BK21 FOUR Educ Res Grp Age Associated Disorder Con, Gwangju 501759, South Korea
[3] Chosun Univ, Basic Sci Inst, Gwangju 61452, South Korea
基金
新加坡国家研究基金会;
关键词
Schizophrenia; gene expression; DNA methylation; multi omics; machine learning; DNA METHYLATION; HYPOTHESIS; NORMALIZATION;
D O I
10.2174/0115748936293407240222113019
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Introduction The recent advancement in artificial intelligence has compelled medical research to adapt the technologies. The abundance of molecular data and AI technology has helped in explaining various diseases, even cancers. Schizophrenia is a complex neuropsychological disease whose etiology is unknown. Several gene-wide association studies attempted to narrow down the cause of the disease but did not successfully point out the mechanism behind the disease. There are studies regarding the epigenetic changes in the schizophrenia disease condition, and a classification machine-learning model has been trained using the blood methylation data.Methods In this study, we have demonstrated a novel approach to elucidating the molecular cause of the disease. We used a two-step machine-learning approach to determine the causal molecular markers. By doing so, we developed classification models using both gene expression microarray and methylation microarray data.Results Our models, because of our novel approach, achieved good classification accuracy with the available data size. We analyzed the important features, and they add up as evidence for the glutamate hypothesis of schizophrenia.Conclusion In this way, we have demonstrated explaining a disease through machine learning models.
引用
收藏
页码:31 / 45
页数:15
相关论文
共 50 条
  • [1] Analyzing DNA methylation patterns in subjects diagnosed with schizophrenia using machine learning methods
    Moghadam, Behrooz Torabi
    Etemadikhah, Mitra
    Rajkowska, Grazyna
    Stockmeier, Craig
    Grabherrd, Manfred
    Komorowski, Jan
    Feuk, Lars
    Carlstrom, Eva Lindholm
    JOURNAL OF PSYCHIATRIC RESEARCH, 2019, 114 : 41 - 47
  • [2] Improving the prediction of cardiovascular risk with machine-learning and DNA methylation data
    Cugliari, Giovanni
    Benevenuta, Silvia
    Guarrera, Simonetta
    Sacerdote, Carlotta
    Panico, Salvatore
    Krogh, Vittorio
    Tumino, Rosario
    Vineis, Paolo
    Fariselli, Piero
    Matullo, Giuseppe
    2019 16TH IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY - CIBCB 2019, 2019, : 39 - 42
  • [3] Machine Learning Approaches to Classify Primary and Metastatic Cancers Using Tissue of Origin-Based DNA Methylation Profiles
    Modhukur, Vijayachitra
    Sharma, Shakshi
    Mondal, Mainak
    Lawarde, Ankita
    Kask, Keiu
    Sharma, Rajesh
    Salumets, Andres
    CANCERS, 2021, 13 (15)
  • [4] A comparative study of machine learning and deep learning algorithms to classify cancer types based on microarray gene expression data
    Tabares-Soto, Reinel
    Orozco-Arias, Simon
    Romero-Cano, Victor
    Segovia Bucheli, Vanesa
    Luis Rodriguez-Sotelo, Jose
    Felipe Jimenez-Varon, Cristian
    PEERJ COMPUTER SCIENCE, 2020, PeerJ Inc. (2020)
  • [5] Using comprehensive machine-learning models to classify complex morphological characters
    Teng, Dequn
    Li, Fengyuan
    Zhang, Wei
    ECOLOGY AND EVOLUTION, 2021, 11 (15): : 10421 - 10431
  • [6] A comprehensive machine-learning model applied to MRI to classify germinomas of the pineal region
    Ye, Ningrong
    Yang, Qi
    Liu, Peikun
    Chen, Ziyan
    Li, Xuejun
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 152
  • [7] The machine learning algorithm for the diagnosis of schizophrenia on the basis of gene expression in peripheral blood
    Zhu, Lulu
    Wu, Xulong
    Xu, Bingyi
    Zhao, Zhi
    Yang, Jialei
    Long, Jianxiong
    Su, Li
    NEUROSCIENCE LETTERS, 2021, 745
  • [8] Cancer Classification of Gene Expression Data using Machine Learning Models
    De Guia, Joseph M.
    Devaraj, Madhavi
    Vea, Larry A.
    2018 IEEE 10TH INTERNATIONAL CONFERENCE ON HUMANOID, NANOTECHNOLOGY, INFORMATION TECHNOLOGY, COMMUNICATION AND CONTROL, ENVIRONMENT AND MANAGEMENT (HNICEM), 2018,
  • [9] Machine-Learning based IoT Data Caching
    Pahl, Marc-Oliver
    Liebald, Stefan
    Wuestrich, Lars
    2019 IFIP/IEEE SYMPOSIUM ON INTEGRATED NETWORK AND SERVICE MANAGEMENT (IM), 2019,
  • [10] miRNA-Based Diagnosis of Schizophrenia Using Machine Learning
    Heda, Vishrut
    Dogra, Saanvi
    Kouznetsova, Valentina L.
    Kumar, Alex
    Kesari, Santosh
    Tsigelny, Igor F.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2025, 26 (05)