Gbdmr: identifying differentially methylated CpG regions in the human genome via generalized beta regressions

被引:1
作者
Wu, Chengzhou [1 ]
Mou, Xichen [1 ]
Zhang, Hongmei [1 ]
机构
[1] Univ Memphis, Sch Publ Hlth, 3720 Alumni Ave, Memphis, TN 38152 USA
关键词
Differentially methylated regions; Generalized beta distribution; DNA methylation; CpG site; DNA METHYLATION;
D O I
10.1186/s12859-024-05711-y
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
BackgroundDNA methylation is a biochemical process in which a methyl group is added to the cytosine-phosphate-guanine (CpG) site on DNA molecules without altering the DNA sequence. Multiple CpG sites in a certain genome region can be differentially methylated across phenotypes. Identifying these differentially methylated CpG regions (DMRs) associated with the phenotypes contributes to disease prediction and precision medicine development.ResultsWe propose a novel DMR detection algorithm, gbdmr. In contrast to existing methods under a linear regression framework, gbdmr assumes that DNA methylation levels follow a generalized beta distribution. We compare gbdmr to alternative approaches via simulations and real data analyses, including dmrff, a new DMR detection approach that shows promising performance among competitors, and the traditional EWAS that focuses on single CpG sites. Our simulations demonstrate that gbdmr is superior to the other two when the correlation between neighboring CpG sites is strong, while dmrff shows a higher power when the correlation is weak. We provide an explanation of these phenomena from a theoretical perspective. We further applied the three methods to multiple real DNA methylation datasets. One is from a birth cohort study undertaken on the Isle of Wight, United Kingdom, and the other two are from the Gene Expression Omnibus database repository. Overall, gbdmr identifies more DMR CpGs linked to phenotypes than dmrff, and the simulated results support the findings.ConclusionsGbdmr is an innovative method for detecting DMRs based on generalized beta regression. It demonstrated notable advantages over dmrff and traditional EWAS, particularly when adjacent CpGs exhibited moderate to strong correlations. Our real data analyses and simulated findings highlight the reliability of gbdmr as a robust DMR detection tool. The gbdmr approach is accessible and implemented by R on GitHub: https://github.com/chengzhouwu/gbdmr.
引用
收藏
页数:17
相关论文
共 35 条
[1]  
Aatsha P, 2022, StatPearls
[2]  
Achermann JC., 2005, Clin Pediatr Endocrinol, DOI [10.1002/9780470987117, DOI 10.1002/9780470987117]
[3]   Cohort Profile: The Isle Of Wight Whole Population Birth Cohort (IOWBC) [J].
Arshad, S. Hasan ;
Holloway, John W. ;
Karmaus, Wilfried ;
Zhang, Hongmei ;
Ewart, Susan ;
Mansfield, Linda ;
Matthews, Sharon ;
Hodgekiss, Claire ;
Roberts, Graham ;
Kurukulaaratchy, Ramesh .
INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2018, 47 (04) :1043-+
[4]   Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells [J].
Ball, Madeleine P. ;
Li, Jin Billy ;
Gao, Yuan ;
Lee, Je-Hyuk ;
LeProust, Emily M. ;
Park, In-Hyun ;
Xie, Bin ;
Daley, George Q. ;
Church, George M. .
NATURE BIOTECHNOLOGY, 2009, 27 (04) :361-368
[5]   Safety and feasibility of oral immunotherapy to multiple allergens for food allergy [J].
Begin, Philippe ;
Winterroth, Lisa C. ;
Dominguez, Tina ;
Wilson, Shruti P. ;
Bacal, Liane ;
Mehrotra, Anjuli ;
Kausch, Bethany ;
Trela, Anthony ;
Hoyte, Elisabeth ;
O'Riordan, Gerri ;
Seki, Scott ;
Blakemore, Alanna ;
Woch, Margie ;
Hamilton, Robert G. ;
Nadeau, Kari C. .
ALLERGY ASTHMA AND CLINICAL IMMUNOLOGY, 2014, 10
[6]   DNA methylation patterns associate with genetic and gene expression variation in HapMap cell lines [J].
Bell, Jordana T. ;
Pai, Athma A. ;
Pickrell, Joseph K. ;
Gaffney, Daniel J. ;
Pique-Regi, Roger ;
Degner, Jacob F. ;
Gilad, Yoav ;
Pritchard, Jonathan K. .
GENOME BIOLOGY, 2011, 12 (01)
[7]   High-throughput DNA methylation profiling using universal bead arrays [J].
Bibikova, M ;
Lin, ZW ;
Zhou, LX ;
Chudin, E ;
Garcia, EW ;
Wu, B ;
Doucet, D ;
Thomas, NJ ;
Wang, YH ;
Vollmer, E ;
Goldmann, T ;
Seifart, C ;
Jiang, W ;
Barker, DL ;
Chee, MS ;
Floros, J ;
Fan, JB .
GENOME RESEARCH, 2006, 16 (03) :383-393
[8]   DNA methylation and cancer [J].
Das, PM ;
Singal, R .
JOURNAL OF CLINICAL ONCOLOGY, 2004, 22 (22) :4632-4642
[9]   DNA methylation profiling of human chromosomes 6, 20 and 22 [J].
Eckhardt, Florian ;
Lewin, Joern ;
Cortese, Rene ;
Rakyan, Vardhman K. ;
Attwood, John ;
Burger, Matthias ;
Burton, John ;
Cox, Tony V. ;
Davies, Rob ;
Down, Thomas A. ;
Haefliger, Carolina ;
Horton, Roger ;
Howe, Kevin ;
Jackson, David K. ;
Kunde, Jan ;
Koenig, Christoph ;
Liddle, Jennifer ;
Niblett, David ;
Otto, Thomas ;
Pettett, Roger ;
Seemann, Stefanie ;
Thompson, Christian ;
West, Tony ;
Rogers, Jane ;
Olek, Alex ;
Berlin, Kurt ;
Beck, Stephan .
NATURE GENETICS, 2006, 38 (12) :1378-1385
[10]   DNA methylation changes related to nutritional deprivation: a genome-wide analysis of population and in vitro data [J].
He, Yujie ;
de Witte, Lot D. ;
Houtepen, Lotte C. ;
Nispeling, Danny M. ;
Xu, Zhida ;
Yu, Qiong ;
Yu, Yaqin ;
Hol, Elly M. ;
Kahn, Rene S. ;
Boks, Marco P. .
CLINICAL EPIGENETICS, 2019, 11 (1)