Electronic Spectroscopy of Graphene Obtained by Ultrasonic Dispersion

被引:1
作者
Kastsova, A. G. [1 ]
Glebova, N. V. [1 ]
Nechitailov, A. A. [1 ]
Krasnova, A. O. [1 ]
Pelageikina, A. O. [1 ]
Eliseyev, I. A. [1 ]
机构
[1] Ioffe Inst, St Petersburg, Russia
关键词
graphene; ultrasonic dispersion; thermally expanded graphite; OXIDE;
D O I
10.1134/S1063785023900297
中图分类号
O59 [应用物理学];
学科分类号
摘要
A technology for obtaining graphene by means of ultrasonic dispersion of thermally expanded graphite in the presence of a surface-active polymer Nation is presented. The technology makes it possible to obtain large amounts of low-layer (1-3 layers) graphene in a relatively short time. An approach to control the dispersion process based on UV spectroscopy of dispersions is described. A mechanism is proposed for the effect of a surface-active polymer on the production of low-layer graphene by ultrasonic dispersion.
引用
收藏
页码:S31 / S33
页数:3
相关论文
共 50 条
[21]   Synthesis of Isotopically-Labeled Graphite Films by Cold-Wall Chemical Vapor Deposition and Electronic Properties of Graphene Obtained from Such Films [J].
Cai, Weiwei ;
Piner, Richard D. ;
Zhu, Yanwu ;
Li, Xuesong ;
Tan, Zhenbing ;
Floresca, Herman Carlo ;
Yang, Changli ;
Lu, Li ;
Kim, M. J. ;
Ruoff, Rodney S. .
NANO RESEARCH, 2009, 2 (11) :851-856
[22]   The direct measurement of the electronic density of states of graphene using metastable induced electron spectroscopy [J].
Chambers, Benjamin A. ;
Neumann, C. ;
Turchanin, Andrey ;
Gibson, Christopher T. ;
Andersson, Gunther G. .
2D MATERIALS, 2017, 4 (02)
[23]   Graphene-Pyrene Nanocomposites Obtained Using Azide Chemistry [J].
Xia, Zhenyuan ;
Kabe, Ryota ;
Liscio, Andrea ;
Kovtun, Alessandro ;
Treossi, Emanuele ;
Feng, Xinliang ;
Palermo, Vincenzo .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2018, 18 (02) :1290-1295
[24]   Characterization of graphene nanosheets obtained by a modified Hummer's method [J].
Hack, Renata ;
Gumz Correia, Claudia Hack ;
de Simone Zanon, Ricardo Antnio ;
Pezzin, Sergio Henrique .
MATERIA-RIO DE JANEIRO, 2018, 23 (01)
[25]   Graphene-Metal Nanoparticle Hybrids: Electronic Interaction Between Graphene and Nanoparticles [J].
Devi, M. Manolata ;
Sahu, S. R. ;
Mukherjee, Puspal ;
Sen, Pratik ;
Biswas, Krishanu .
TRANSACTIONS OF THE INDIAN INSTITUTE OF METALS, 2016, 69 (04) :839-844
[26]   Structural Defects on Graphene Generated by Deposition of CoO: Effect of Electronic Coupling of Graphene [J].
Hernandez-Gomez, Cayetano ;
Prieto, Pilar ;
Morales, Carlos ;
Serrano, Aida ;
Flege, Jan Ingo ;
Mendez, Javier ;
Garcia-Perez, Julia ;
Granados, Daniel ;
Soriano, Leonardo .
MATERIALS, 2024, 17 (13)
[27]   Unraveling the electronic properties of graphene with substitutional oxygen [J].
Mackenzie, David M. A. ;
Galbiati, Miriam ;
de Cerio, Xabier D. ;
Sahalianov, I. Y. ;
Radchenko, Taras M. ;
Sun, Jianbo ;
Pena, Diego ;
Gammelgaard, Lene ;
Jessen, Bjarke S. ;
Thomsen, Joachim D. ;
Boggild, Peter ;
Garcia-Lekue, Aran ;
Camilli, Luca ;
Caridad, Jose M. .
2D MATERIALS, 2021, 8 (04)
[28]   Liquid phase exfoliated graphene for electronic applications [J].
Sukumaran, Sheena S. ;
Jinesh, K. B. ;
Gopchandran, K. G. .
MATERIALS RESEARCH EXPRESS, 2017, 4 (09)
[29]   Dispersion of Graphene in Aqueous Solution [J].
Russian Journal of Physical Chemistry A, 2018, 92 :1558-1562
[30]   Dispersion of graphene in ethanol by sonication [J].
Cayambe, M. ;
Zambrano, C. ;
Tene, T. ;
Guevara, M. ;
Tubon Usca, G. ;
Brito, H. ;
Molina, R. ;
Coello-Fiallos, D. ;
Caputi, L. S. ;
Vacacela Gomez, C. .
MATERIALS TODAY-PROCEEDINGS, 2021, 37 :4027-4030