Electronic Spectroscopy of Graphene Obtained by Ultrasonic Dispersion

被引:1
作者
Kastsova, A. G. [1 ]
Glebova, N. V. [1 ]
Nechitailov, A. A. [1 ]
Krasnova, A. O. [1 ]
Pelageikina, A. O. [1 ]
Eliseyev, I. A. [1 ]
机构
[1] Ioffe Inst, St Petersburg, Russia
关键词
graphene; ultrasonic dispersion; thermally expanded graphite; OXIDE;
D O I
10.1134/S1063785023900297
中图分类号
O59 [应用物理学];
学科分类号
摘要
A technology for obtaining graphene by means of ultrasonic dispersion of thermally expanded graphite in the presence of a surface-active polymer Nation is presented. The technology makes it possible to obtain large amounts of low-layer (1-3 layers) graphene in a relatively short time. An approach to control the dispersion process based on UV spectroscopy of dispersions is described. A mechanism is proposed for the effect of a surface-active polymer on the production of low-layer graphene by ultrasonic dispersion.
引用
收藏
页码:S31 / S33
页数:3
相关论文
共 50 条
  • [1] Electronic Spectroscopy of Graphene Obtained by Ultrasonic Dispersion
    A. G. Kastsova
    N. V. Glebova
    A. A. Nechitailov
    A. O. Krasnova
    A. O. Pelageikina
    I. A. Eliseyev
    Technical Physics Letters, 2023, 49 : S31 - S33
  • [2] Infrared spectroscopy of electronic bands in bilayer graphene
    Kuzmenko, A. B.
    van Heumen, E.
    van der Marel, D.
    Lerch, P.
    Blake, P.
    Novoselov, K. S.
    Geim, A. K.
    PHYSICAL REVIEW B, 2009, 79 (11):
  • [3] Study of the stability of the emulsion of ultramicroheterogeneous flotation reagents obtained by the method of ultrasonic dispersion
    Yessengaziyev, A. M.
    Barmenshinova, M. B.
    Bilyalova, S. M.
    Mukhanova, A. A.
    Muhamedilova, A. M.
    KOMPLEKSNOE ISPOLZOVANIE MINERALNOGO SYRA, 2020, (03): : 65 - 75
  • [4] ELECTRONIC ENERGY DISPERSION AND STRUCTURAL PROPERTIES ON GRAPHENE AND CARBON NANOTUBES
    Racolta, D.
    Andronache, C.
    Todoran, D.
    Todoran, R.
    ROMANIAN JOURNAL OF PHYSICS, 2016, 61 (5-6): : 992 - 998
  • [5] Phonon spectroscopy through the electronic density of states in graphene
    Nicol, E. J.
    Carbotte, J. P.
    PHYSICAL REVIEW B, 2009, 80 (08)
  • [6] Investigation of the effect of nonlocal scale on ultrasonic wave dispersion characteristics of a monolayer graphene
    Narendar, S.
    Mahapatra, D. Roy
    Gopalakrishnan, S.
    COMPUTATIONAL MATERIALS SCIENCE, 2010, 49 (04) : 734 - 742
  • [7] High performance graphene- and MWCNTs-based PS/PPO composites obtained via organic solvent dispersion
    Ghislandi, Marcos
    Tkalya, Evgeniy
    Schillinger, Simon
    Koning, Cor E.
    de With, Gijsbertus
    COMPOSITES SCIENCE AND TECHNOLOGY, 2013, 80 : 16 - 22
  • [8] Characterization of nanocellulose-graphene electric heating membranes prepared via ultrasonic dispersion
    Shao, Chuang
    Li, Xinpu
    Lin, Shangui
    Zhuo, Bing
    Yang, Sheng
    Yuan, Quanping
    JOURNAL OF MATERIALS SCIENCE, 2020, 55 (01) : 421 - 437
  • [9] Graphene quantum dots obtained by unfolding fullerene
    Kaciulis, S.
    Mezzi, A.
    Soltani, P.
    Pizzoferrato, R.
    Ciotta, E.
    Prosposito, P.
    THIN SOLID FILMS, 2019, 673 : 19 - 25
  • [10] Impact of the microstructure of polycarboxylate superplasticizers on the dispersion of graphene
    Wang, Qin
    Zhan, Da-fu
    Qi, Guo-dong
    Wang, Yue
    Zheng, Hai-yu
    NEW CARBON MATERIALS, 2020, 35 (05) : 547 - 558